Three dimensional (3D) printing involves a number of additive manufacturing techniques that are used to build structures from the ground up. This technology has been adapted to a wide range of surgical applications at an impressive rate. It has been used to print patient-specific anatomic models, implants, prosthetics, external fixators, splints, surgical instrumentation, and surgical cutting guides. The profound utility of this technology in surgery explains the exponential growth. It is important to learn how 3D printing has been used in surgery and how to potentially apply this technology. PubMed was searched for studies that addressed the clinical application of 3D printing in all surgical fields, yielding 442 results. Data was manually extracted from the 168 included studies. We found an exponential increase in studies addressing surgical applications for 3D printing since 2011, with the largest growth in craniofacial, oromaxillofacial, and cardiothoracic specialties. The pertinent considerations for getting started with 3D printing were identified and are discussed, including, software, printing techniques, printing materials, sterilization of printing materials, and cost and time requirements. Also, the diverse and increasing applications of 3D printing were recorded and are discussed. There is large array of potential applications for 3D printing. Decreasing cost and increasing ease of use are making this technology more available. Incorporating 3D printing into a surgical practice can be a rewarding process that yields impressive results.
Bony defects caused by trauma, tumors, infection or congenital anomalies can present a significant surgical challenge. Free vascularised fibular bone grafts (FVFGs) have proven to be extremely effective in managing larger defects (longer than 6 cm) where other conventional grafts have failed. FVFGs also have a role in the treatment of avascular necrosis (AVN) of the femoral head, failed spinal fusions and complex arthrodeses. Due to the fact that they have their own blood supply, FVFGs are effective even in cases where there is poor vascularity at the recipient site, such as in infection and following radiotherapy. This article discusses the versatility of the FVFG and its successful application to a variety of different pathologies. It also covers the applied anatomy, indications, operative techniques, complications and donor-site morbidity. Though technically challenging and demanding, the FVFG is an extremely useful salvage option and can facilitate limb reconstruction in the most complex of cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.