The cement industry contributes about 5% to global anthropogenic CO2 emissions, and is thus an important sector in CO2-emission mitigation strategies. Carbon dioxide is emitted from the calcination process of limestone, from combustion of fuels in the kiln, and from the coal combustion during power generation. Strategies to reduce these CO2 emissions include energy efficiency improvement, new processes, shift to low carbon fuels or waste fuels in cement production, increased use of additives in cement production, alternative cements, and CO2 removal from flue gases in clinker kilns. Increased use of fly ash as an additive to cement and concrete has a number of advantages, the primary being reduction of costs of fly ash disposal, resource conservation, and cost reduction of the product. Since the production of cement requires a large amount of energy (about 2.9-3.2 GJt-1), the substitution of cement by fly ash saves not only energy but also reduces the associated greenhouse gas emissions. The paper evaluates the reduction of CO2 emissions that can be achieved by these mitigation strategies, as well as by partial substitution of cement by fly ash. The latter is important because the quality of the produced concrete depends on the physical-chemical properties of the fly ash and thus partial substitution as well as the type of fly ash (e.g., the content of CaO) has an effect not only on energy consumption and emissions, but also on the produced concrete quality.
Computer-Assisted Orthopaedic Surgery (CAOS) defines a set of techniques that use computers and other devices for planning, guiding, and performing surgical interventions. The important components of CAOS are accurate geometrical models of human bones and plate implants, which can be used in preoperational planning or for surgical guiding during an intervention. Software framework which is introduced in this study is based on the Model-View-Controller (MVC) architectural pattern, and it uses 3D models of bones and plate implants developed by the application of the Method of Anatomical Features (MAF). The presented framework may be used for preoperative planning processes and for the production of personalized plate implants. The main idea of the research was to develop a novel integrated software framework which will provide improved personalized healthcare to the patient, and at the same time, provide the surgeon with more control over the patient's treatment and recovery.
The current major scaffold design concepts for bone tissue recovery are characterized by labyrinthine design. Their main shortcomings are low level of permeability for new growing tissue, poor design adaptability in regard to particular anatomy and required biomechanical conditions during recovery, as well as very demanding post processing after free form fabrication. In contrast to the most of the existing solutions, latticed scaffold design does not try to imitate the trabecular structure and rejects the labyrinthine concept. It is characterized by simple 3D latticed support structure, which provides a high level of permeability for the new growing tissue cells, and in the same time a proper level of bio-adhesiveness. In addition, its design is easy to manage in order to make it follow the particular anatomical shape and at the same time provide the required elastic properties and structural strength. The paper presents a part of design concept proving process, which is related to stress analysis of the anatomically shaped lattice scaffold design. The aim of the analysis was to identify functional relation between design parameters and elastic properties of the scaffold. The established relations are crucial for getting optimal values of elastic properties of scaffold that are required in a specific trauma-fixation case. The design study shown in the paper was done for the case of lattice scaffold anatomically shaped to the upper part of proximal diaphyseal trauma of rabbit tibia. Design parameters which were altered within the design study were lattice's struts cross-sectional area, density of the struts and angle of the struts intersection. The analysis showed that structural flexibility of latticelike scaffold may easily be changed through modification of three selected design parameters. In this way, it is confirmed that the proposed type of scaffold has an important capability to adapt its elastic properties to the required values, while being able to keep its great permeability and geometrical consistency to the particular anatomy of trauma region.
The current major scaffold design concepts for bone tissue recovery are characterized by labyrinthine design. Their main shortcomings are low level of permeability for new growing tissue, poor design adaptability in regard to particular anatomy and required biomechanical conditions during recovery, as well as very demanding post processing after free form fabrication. In contrast to the most of the existing solutions, latticed scaffold design does not try to imitate the trabecular structure and rejects the labyrinthine concept. It is characterized by simple 3D latticed support structure, which provides a high level of permeability for the new growing tissue cells, and in the same time a proper level of bio-adhesiveness. In addition, its design is easy to manage in order to make it follow the particular anatomical shape and at the same time provide the required elastic properties and structural strength. The paper presents a part of design concept proving process, which is related to stress analysis of the anatomically shaped lattice scaffold design. The aim of the analysis was to identify functional relation between design parameters and elastic properties of the scaffold. The established relations are crucial for getting optimal values of elastic properties of scaffold that are required in a specific trauma-fixation case. The design study shown in the paper was done for the case of lattice scaffold anatomically shaped to the upper part of proximal diaphyseal trauma of rabbit tibia. Design parameters which were altered within the design study were lattice's struts cross-sectional area, density of the struts and angle of the struts intersection. The analysis showed that structural flexibility of latticelike scaffold may easily be changed through modification of three selected design parameters. In this way, it is confirmed that the proposed type of scaffold has an important capability to adapt its elastic properties to the required values, while being able to keep its great permeability and geometrical consistency to the particular anatomy of trauma region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.