With the rapid urbanization and people moving from rural areas to urban time has become a very huge commodity. As a result of this change in people's lifestyles, there is a growing need for speed and efficiency. In the supermarket industry, item identification and billing are generally done manually, which takes a lot of time and effort. The lack of a bar code on the fruit products slows down the processing time. Before beginning the billing process, the seller may need to weigh the items in order to update the barcode, or the biller may need to input the item's name manually. This doubles the effort and also consumes a significant amount of time. As a result, several convolutional neural network-based classifiers are proposed to identify the fruits by visualizing via the camera for establishing a quick billing procedure in order to overcome this difficulty. The best model among the suggested models is capable of classifying pictures with start-of-art accuracy, which is superior than that of previously published studies.
The government's months-long total lockdown in response to the COVID19 outbreak has resulted in a lack of physical connection with others. This resulted in a massive increase in social media communication. Twitter has become one of the most popular places for people to communicate their thoughts and opinions. As a result, massive amounts of data are created every day. These data can assist businesses in making better judgments. In the case of Nepal, there has been relatively little investigation into the text's analysis. Because few researchers are working in the field, development is slow. In this study, Four language-based models for sentiment analysis of Nepali covid19 tweets are designed and evaluated. Because the number of individuals using social media is expected to skyrocket in the next few days, companies will benefit from an AI-based sentiment analysis system. It will greatly assist firms in adapting to the changing climate.
Image denoising is a crucial topic in image processing. Noisy images are generated due to technical and environmental errors. Therefore, it is reasonable to consider image denoising an important topic to study, as it also helps to resolve other image processing issues. However, the challenge is that the classical techniques used are time-consuming and not flexible enough. This article compares the two major neural network architecture which looks promising to resolve this issues. The AutoEncoder and UNET is now the most researched subject in deep learning for image denoising. Multiple model architectures are designed, implement, and evaluated. The dataset is preprocessed and then it is used to train and test the model. It is clearly shown in this paper which model performs the best in this task by comparing both models using the most used parameters to evaluate image quality PSNR and SSIM.
Image denoising is an important aspect of image processing. Noisy images are produced as a result of technical and environmental flaws. As a result, it is reasonable to consider image denoising an important topic to research, as it also aids in the resolution of other image processing issues. The challenge, however, is that the traditional techniques used are time-consuming and inflexible. This article purposed a system of classifying and denoising noised images. A CNN and UNET based model architecture is designed, implement, and evaluated. The facial image dataset is processed and then it is used to train, valid and test the models. During preprocessing, the images are resized into 48*48, normalize, and various noises are added to the image. The preprocessing for each model is a bit different. The training and validation accuracy for the CNN model is 99.87% and 99.92% respectively. The UNET model is also able to get optimal PSNR and SSIM values for different noises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.