The purpose of the study was to identify and analyze the biomechanical structure of the hurdle clearance of the sixth hurdle in the 100-m hurdle race of Sally Pearson, the Olympic and world champion. An analysis of the hurdle clearance technique was carried out at the IAAF World Challenge-Zagreb 2011 international competition. 3-D kinematical analysis was utilized along with Ariel Performance Analysis System (APAS) for data processing. Digitization of the 15-segment model of the athlete's body, which was defined with 17 reference points, was performed. The results of the study show the extreme rationality of the hurdle clearance technique, which is demonstrated in the time interval between takeoff and landing (0.31 seconds), in the short contact times of the takeoff phase (0.10 seconds) before the hurdle and landing following the hurdle clearance (0.09 seconds), in the low flight parabola of the central TT (0.25 m), in the minimal decrease in horizontal velocity (1.5%), and in the efficient transition between the hurdle clearance and the sprint between hurdles. The obtained parameters can serve as orientational model values in the 100-m hurdle running technique training process for athletes.
SUMMARYSki school programmes in different countries are adapted to the local conditions and skiing trends. The aim of the study was to establish the progressivity of the three basic elements of the Slovenian ski school in terms of the duration of individual turns and their phases. Eight participants were recorded as they performed three basic elements of the Slovenian national ski school: wedge curves -E1, turns with a wedge push-off -E2 and basic swinging -E3. According to the ski school, the elements were divided into phases. The results of the computer-aided video analysis showed that in the beginning types of skiing in the same conditions on the same length of terrain, the average durations of turns and the times of comparable initiation and steering phases of the elements shortened on the methodical upward scale (from E1 to E3). The number of turns executed on the same length of terrain from E1 to E3 increased. A larger step in motor task complexity was indicated when a pole plant was included in skiing elements. Further, relatively large differences were observed in time durations among subjects executing the same elements. In conclusion, it can be assessed that the basic elements of the ski school are placed gradually in terms of progressivity in time durations.
The main aim of the study was to determine the kinematic model for long jump and define the kinematic and dynamic parameters of an elite long jumper's technique. The theoretical model was based on real data where the jumper was defined with a joint mass point. In view of certain previous similar studies, our study identified kinematic and dynamic parameters directly without using the inverse mechanics method. The analysis was made on two jumps of the top level athlete G.C., who won the bronze medallion in long jump at the World Championships in Seville. The kinematic parameters of the take-off, flight and landing were measured with a 3-D video ARIEL system (Ariel Dynamics Inc., USA). The dynamic characteristics of take-off in the X, Y and Z axes were registered with a force-platform (KISTLER-9287), which was installed immediately prior the take-off board. The take-off efficiency was defined best by the following parameters: horizontal velocity, VXTO-8.10 m s À1; vertical velocity, VYTO-3.90 m s À1; angle of projection, ; duration of compression phase, TDMKF-84 ms, duration of lift phase, MKFTO-43 ms and maximal force in Y-vertical axis, FYMAX-5132 N. An important factor of a rational technique of long jump is also the landing, which is defined by the landing distance and fall-back distance. The efficiency of the landing depended on the landing distance L3-0.63 m and fall-back distance LFB, which amounted to 0.15 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.