Tendons have a limited capacity to repair both naturally and following clinical interventions. Damaged tissue often presents with structural and functional differences, adversely affecting animal performance, mobility, health and welfare. Advances in cell therapies have started to overcome some of these issues, however complications such as the formation of ectopic bone remain a complication of this technique. Regenerative medicine is therefore looking towards future therapies such as the introduction of microvesicles (MVs) derived from stem cells (SCs). The aim of the present study was to assess the characteristics of artificially derived MVs, from equine mesenchymal stem cells (MSCs), when delivered to rat tendon cells in vitro and damaged tendons in vivo. The initial stages of extracting MVs from equine MSCs and identifying and characterising the cultured tendon stem/progenitor cells (TSCs) from rat Achilles tendons were undertaken successfully. The horse MSCs, and the rat tendon cells, were both capable of differentiating in three directions: adipogenic, osteogenic and chondrogenic pathways. The artificially derived equine MVs successfully fused with the TSC membranes, and no cytotoxic or cytostimulating effects were observed. In addition, co-cultivation of TSCs with MVs lead to stimulation of cell proliferation and migration, and cytokine VEGF and Fractalkine expression levels were significantly increased. These experiments are the first to show that artificially derived MVs exhibited regeneration-stimulating effects in vitro, and that fusion of cytoplasmic membranes from diploid cell lines originating from different species was possible. Explorations in vivo showed accelerated regeneration of injury tendons after introduction of the MVs into damaged areas. The results from the studies performed indicated obvious positive modifying effects following the administration of MVs. This represents the initial successful steps required prior to translating this regenerative medicine technique into clinical trials, such as for tendon repair in injured horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.