Industrial demands for enzymes that are stable in a broad range of conditions are increasing. Such enzymes, one of which is α-amylase, could be produced by extremophiles. This study reports a thermostable α-amylase produced by a newly isolated Geobacillus sp. nov. from a geothermal area. The phylogenetic analysis of the 16S rRNA gene showed that the isolate formed a separate branch with 95% homology to Geobacillus sp. After precipitation using ammonium sulphate followed by ion-exchange chromatography, the enzyme produced a specific activity of 25.1 (U/mg) with a purity of 6.5-fold of the crude extract. The molecular weight of the enzyme was approximately 12.2 kDa. The optimum activity was observed at 75 °C and pH 8. The activity increased in the presence of Ba 2+ and Fe 2+ but decreased in the presence of K + and Mg 2+ . Ca 2+ and Mn 2+ increased the activity slightly. The activity completely diminished with the addition of Cu 2+ . EDTA and PMSF also sharply reduced enzyme activity. Although the stability was moderate, the low molecular weight could be an important feature for its future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.