CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a structurally related receptor (CD200R) expressed on rodent myeloid cells and is involved in regulation of macrophage function. We report the first characterization of human CD200R (hCD200R) and define its binding characteristics to hCD200. We also report the identification of a closely related gene to hCD200R, designated hCD200RLa, and four mouse CD200R-related genes (termed mCD200RLa-d). CD200, CD200R, and CD200R-related genes were closely linked in humans and mice, suggesting that these genes arose by gene duplication. The distributions of the receptor genes were determined by quantitative RT-PCR, and protein expression was confirmed by a set of novel mAbs. The distribution of mouse and human CD200R was similar, with strongest labeling of macrophages and neutrophils, but also other leukocytes, including monocytes, mast cells, and T lymphocytes. Two mCD200 receptor-like family members, designated mCD200RLa and mCD200RLb, were shown to pair with the activatory adaptor protein, DAP12, suggesting that these receptors would transmit strong activating signals in contrast to the apparent inhibitory signal delivered by triggering the CD200R. Despite substantial sequence homology with mCD200R, mCD200RLa and mCD200RLb did not bind mCD200, and presently have unknown ligands. The CD200 receptor gene family resembles the signal regulatory proteins and killer Ig-related receptors in having receptor family members with potential activatory and inhibitory functions that may play important roles in immune regulation and balance. Because manipulation of the CD200-CD200R interaction affects the outcome of rodent disease models, targeting of this pathway may have therapeutic utility.
Many viral proteins limit host immune defenses, and their genes often originate from their hosts. CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a receptor on myeloid cells (CD200R) that is implicated in locally preventing macrophage activation. Distant, but recognizable, homologues of CD200 have been identified in many herpesviruses and poxviruses. Here, we show that the product of the K14 open reading frame from human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) interacts with human CD200R and is expressed at the surfaces of infected cells solely during the lytic cycle. Despite sharing only 40% primary sequence identity, K14 and CD200 interacted with CD200R with an almost identical and low affinity (K D ؍ 0.5 M), in contrast to other characterized viral homologue interactions. Cells expressing CD200 or K14 on the cell surface were able to inhibit secretion by activated macrophages of proinflammatory cytokines such as tumor necrosis factor alpha, an effect that could be specifically relieved by addition of monoclonal antibodies and soluble monomeric CD200 protein. We conclude that CD200 delivers local down-modulatory signals to myeloid cells through direct cell-cell contact and that the K14 viral homologue closely mimics this.
Protective immunity to African swine fever virus (ASFV) may involve a combination of both serological and cellular mechanisms. This work is focused on the identification of the possible relevant serological immunodeterminants of immunity. Thus, 14 serological immunodeterminants of ASFV have been characterized by exhaustive screening of a representative lambda phage cDNA expression library of the tissue culture-adapted Ba71V strain of ASFV. The library was constructed using RNA extracted from Vero cells infected for 3, 6, 9 and 12 h. A total of 150 clones was selected arbitrarily by antibody screening of the library with a polyclonal antiserum from a domestic pig surviving infection with the virulent Malta isolate of ASFV. Sequencing of these clones permitted identification of 14 independent viral proteins that stimulated an antibody response. These included six proteins encoded by previously unassigned open reading frames (ORFs) (B602L, C44L, CP312R, E184L, K145R and K205R) as well as some of the more well-studied structural (A104R, p10, p32, p54 and p73) and non-structural proteins (RNA reductase, DNA ligase and thymidine kinase). Immunogenicity of these proteins was confirmed by demonstrating the corresponding antibodies in sera from pigs infected either with the Malta isolate or with the OURT88/3-OURT88/1 isolate combination. Furthermore, the majority of these ORFs were also recognized by immune antiserum from the natural host, the bush pig, following secondary challenge with the virulent Malawi (SINT90/1) isolate of ASFV. Thus, it is possible that some of these determinants may be important in protection against virus infection.
The aim of this study was to investigate the importance of cellular immunity in foot-and-mouth disease in cattle, in particular to determine whether a CD8 M T-cell response could be detected, as these cells may play a role in both immunity and virus persistence. As attempts to characterize classical cytotoxic T cells had yielded non-reproducible results, largely due to high backgrounds in control cultures, a proliferation assay was developed that was demonstrated to detect antigenspecific, MHC class I-restricted bovine CD8 M cells responding to foot-and-mouth disease virus (FMDV). Proliferative CD8 M T-cell responses were detected consistently from 10 to 14 days following infection with FMDV and typically lasted 3-4 weeks. The role of CD8 M T cells in control of the disease, in particular their relevance for the establishment of persistence, may now be investigated.
Summary CD200 (OX2) is a membrane glycoprotein that interacts with a structurally related receptor (CD200R) involved in the regulation of macrophage function. The interaction is of low affinity (K D $ 1 lm) but can be detected using CD200 displayed in a multivalent form on beads or with dimeric fusion proteins consisting of the extracellular region of CD200 and immunoglobulin Fc regions. We prepared putative pentamers and trimers of mouse CD200 with sequences from cartilage oligomeric matrix protein (COMP) and surfactant protein D (SP-D), respectively. The COMP protein gave high-avidity binding and was a valuable tool for showing the interaction whilst the SP-D protein gave weak binding. In vivo experiments showed that an agonistic CD200R monoclonal antibody caused some amelioration in a model of experimental autoimmune encephalomyelitis but the COMP protein was cleared rapidly and had minimal effect. Pentameric constructs also allowed detection of the rat CD48/CD2 interaction, which is of much lower affinity (K D $ 70 lm). These reagents may have an advantage over Fc-bearing hybrid molecules for probing cell surface proteins without side-effects due to the Fc regions. The CD200-COMP gave strong signals in protein microarrays, suggesting that such reagents may be valuable in high throughput detection of weak interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.