We consider quite general h-pseudodifferential operators on R n with small random perturbations and show that in the limit h → 0 the eigenvalues are distributed according to a Weyl law with a probabality that tends to 1. The first author has previously obtained a similar result in dimension 1. Our class of perturbations is different.
RésuméNous considérons des opérateurs h-pseudodifférentiels assez généraux et nous montrons que dans la limite h → 0, les valeurs propres se distribuent selon une loi de Weyl, avec une probabilité qui tend vers 1. Le premier auteur a déjà obtenu un résultat semblable en dimension 1. Notre classe de perturbations est différente.
Mildred HagerRésumé. -Dans ce travail, nous considérons des opérateurs (pseudo-)différentiels analytiques ainsi que des perturbations multiplicatives aléatoires. Nous montrons pour les opérateurs perturbés qu'avec une probabilité proche de 1, les valeurs propres dans un sous-ensemble du pseudospectre se distribuent d'après une loi de Weyl.Abstract. -In this work, we consider analytic (pseudo-)differential operators as well as random perturbations. We show for the perturbed operators that with probability almost 1, the eigenvalues inside a subdomain of the pseudospectrum are distributed according to a bidimensional Weyl law.
We consider perturbations of a large Jordan matrix, either random and small in norm or of small rank. In the case of random perturbations we obtain explicit estimates which show that as the size of the matrix increases, most of the eigenvalues of the perturbed matrix converge to a certain circle with centre at the origin. In the case of finite rank perturbations we completely determine the spectral asymptotics as the size of the matrix increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.