Cerebral cavernous malformations (CCMs) are congenital vascular anomalies of the central nervous system that can result in hemorrhagic stroke, seizures, recurrent headaches, and focal neurologic deficits. Mutations in the gene KRIT1 are responsible for type 1 CCM (CCM1). We report that a novel gene, MGC4607, exhibits eight different mutations in nine families with type 2 CCM (CCM2). MGC4607, similar to the KRIT1 binding partner ICAP1alpha, encodes a protein with a phosphotyrosine-binding domain. This protein may be part of the complex pathway of integrin signaling that, when perturbed, causes abnormal vascular morphogenesis in the brain, leading to CCM formation.
We investigated the role of PPAR gamma coactivator 1alpha (PGC-1alpha) in muscle dysfunction in Huntington's disease (HD). We observed reduced PGC-1alpha and target genes expression in muscle of HD transgenic mice. We produced chronic energy deprivation in HD mice by administering the catabolic stressor beta-guanidinopropionic acid (GPA), a creatine analogue that reduces ATP levels, activates AMP-activated protein kinase (AMPK), which in turn activates PGC-1alpha. Treatment with GPA resulted in increased expression of AMPK, PGC-1alpha target genes, genes for oxidative phosphorylation, electron transport chain and mitochondrial biogenesis, increased oxidative muscle fibers, numbers of mitochondria and motor performance in wild-type, but not in HD mice. In muscle biopsies from HD patients, there was decreased PGC-1alpha, PGC-1beta and oxidative fibers. Oxygen consumption, PGC-1alpha, NRF1 and response to GPA were significantly reduced in myoblasts from HD patients. Knockdown of mutant huntingtin resulted in increased PGC-1alpha expression in HD myoblast. Lastly, adenoviral-mediated delivery of PGC-1alpha resulted increased expression of PGC-1alpha and markers for oxidative muscle fibers and reversal of blunted response for GPA in HD mice. These findings show that impaired function of PGC-1alpha plays a critical role in muscle dysfunction in HD, and that treatment with agents to enhance PGC-1alpha function could exert therapeutic benefits. Furthermore, muscle may provide a readily accessible tissue in which to monitor therapeutic interventions.
Huntington disease is caused by a dominantly transmitted CAG repeat expansion mutation that is believed to confer a toxic gain of function on the mutant protein. Huntington disease patients with two mutant alleles are very rare. In other poly(CAG) diseases such as the dominant ataxias, inheritance of two mutant alleles causes a phenotype more severe than in heterozygotes. In this multicentre study, we sought differences in the disease features between eight homozygotes and 75 heterozygotes for the Huntington disease mutation. We identified subjects homozygous for the Huntington disease mutation by DNA testing and compared their clinical features (age at onset, symptom presentation, disease severity and disease progression) with those of a group of heterozygotes, who were assessed longitudinally. The age at onset of symptoms in the homozygote cases was within the range expected for heterozygotes with the same CAG repeat lengths, whereas homozygotes had a more severe clinical course. The observation of a more rapid decline in motor, cognitive and behavioural symptoms in homozygotes was consistent with the extent of neurodegeneration as available at imaging in three patients, and at the post-mortem neuropathological report in one case. Our analysis suggests that although homozygosity for the Huntington disease mutation does not lower the age at onset of symptoms, it affects the phenotype and the rate of disease progression. These data, once confirmed in a larger series of patients, point to the possibility that the mechanisms underlying age at onset and disease progression in Huntington disease may differ.
Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic -amyloid protein (A) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4Ј-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified A-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1ЈS,2ЈS)-2-(9-xanthylmethyl)-2-(2Ј-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated A toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (Ϫ)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against A neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N- (2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified A toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to A, whereas dual activation of mGlu2 and mGlu3 receptors is protective against A-induced toxicity.
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms and by a progressive degeneration of neurons in basal ganglia and in brain cortex. Brain-derived neurotrophic factor (BDNF) is a pro-survival factor for striatal neurons. Some evidence implicates a brain BDNF deficiency, related to mutated huntingtin expression, in the selective vulnerability of striatal neurons in HD. We compared BDNF serum levels in 42 patients with HD (range 28-72 years, mean age 51.9 +/- 11.5), and 42 age-matched healthy subjects (range 25-68 years, mean age 48.2 +/- 12.5). We evaluated the potential relationship between BDNF serum levels, CAG repeat number (range 40-54, mean 44.8 +/- 3.4) and duration of illness (range 6-228 months, mean 103.6 +/- 62.1). Serum BDNF levels were significantly lower in patients than in age-matched healthy subjects. Lower BDNF levels were associated with a longer CAG repeat length and a longer duration of illness. Severity of the illness, as assessed by the Unified Huntington's Disease Rating Scale (UHDRS) motor and cognitive scores, was negatively related to serum BDNF levels. These results in vivo confirm that the huntingtin mutation causes BDNF production to decline and show that the BDNF deficiency is detectable in HD patients' sera. Further studies on a larger sample size should confirm whether BDNF concentrations in patients' serum could be a useful clinical marker related to the patients' disease phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.