Background. Pulmonary function tests (PFT) have been developed to analyze tidal breathing in patients who are minimally cooperative due to age and respiratory status. This study used tidal breathing tests in the ED to measure asthma severity. Design/Method. A prospective pilot study in pediatric patients (3 to 18 yrs) with asthma/wheezing was conducted in an ED setting using respiratory inductance plethysmography and pneumotachography. The main outcome measures were testing feasibility, compliance, and predictive value for admission versus discharge. Results. Forty patients were studied, of which, 14 (35%) were admitted. Fifty-five percent of the patients were classified as a mild-intermittent asthmatic, 30% were mild-persistent asthmatics, 12.5% were moderate-persistent asthmatics, and 2.5% were severe-persistent. Heart rate was higher in admitted patients as was labored breathing index, phase angle, and asthma score. Conclusions. Tidal breathing tests provide feasible, objective assessment of patient status in the enrolled age group and may assist in the evaluation of acute asthma exacerbation in the ED. Our results demonstrate that PFT measurements, in addition to asthma scores, may be useful in indicating the severity of wheezing/asthma and the need for admission.
The technique of measuring transpulmonary pressure and respiratory airflow with manometry and pneumotachography using the least mean squared analysis (LMS) has been used broadly in both preclinical and clinical settings for the evaluation of neonatal respiratory function during tidal volume breathing for lung tissue and airway frictional mechanical properties measurements. Whereas the technique of measuring respiratory function using the impulse oscillation technique (IOS) involves the assessment of the relationship between pressure and flow using an impulse signal with a range of frequencies, requires less cooperation and provides more information on total respiratory system resistance (chest wall, lung tissue, and airways). The present study represents a preclinical animal study to determine whether these respiratory function techniques (LMS and IOS) are comparable in detecting changes in respiratory resistance derived from a direct pharmacological challenge.
Background
This study presents an animal model of native airway hyperresponsiveness (AHR). AHR is a fundamental aspect of asthma and reflects an abnormal response characterized by airway narrowing following exposure to a wide variety of non-immunological stimuli. Undescended testis (UDT) is one of the most common male congenital anomalies. The orl rat is a Long Evans substrain with inherited UDT. Since boys born with congenital UDT are more likely to manifest asthma symptoms, the main aim in of this study was to investigate the alternative hypothesis that orl rats have greater AHR to a methacholine aerosol challenge than wild type rats.
Methods
Long Evans wild type (n = 9) and orl (n = 13) rats were anesthetized, tracheostomized, and mechanically ventilated at 4 weeks of age. Escalating concentrations of inhaled methacholine were delivered. The methacholine potency and efficacy in the strains were measured. Respiratory resistance was the primary endpoint. After the final methacholine aerosol challenge, the short-acting β2-adrenoceptor agonist albuterol was administered as an aerosol and lung/diaphragm tissues were assayed for interleukin (IL)-4, IL-6, and tumor necrosis factor (TNF)-α. Histological and histomorphometrical analyses were performed.
Results
The methacholine concentratione-response curve in the orl group indicated increased sensitivity, hyperreactivity, and exaggerated maximal response in comparison with the wild type group, indicating that orl rats had abnormally greater AHR responses to methacholine. Histological findings in orl rats showed the presence of eosinophils, unlike wild type rats. β2-Adrenoceptor agonist intervention resulted in up-regulation of IL-4 diaphragmatic levels and down-regulation of IL-4 and IL-6 in the lungs of orl rats.
Conclusion
orl rats had greater AHR than wild type rats during methacholine challenge, with higher IL-4 levels in diaphragmatic tissue homogenates. Positive immunostaining for IL-4 was detected in lung and diaphragmatic tissue in both strains. This model offers advantages over other pre-clinical murine models for studying potential mechanistic links between cryptorchidism and asthma. This animal model may be useful for further testing of compounds/therapeutics options for treating AHR.
Background:We hypothesized that thoraco-abdominal synchrony (TAA) will correlate with impulse oscillation (IOS) markers of lung mechanics in symptomatic asthmatic childred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.