It has been suggested that tropical forest and savanna could represent alternative stable states, implying critical transitions at tipping points in response to altered climate or other drivers. So far, evidence for this idea has remained elusive, and integrated climate models assume smooth vegetation responses. We analyzed data on the distribution of tree cover in Africa, Australia, and South America to reveal strong evidence for the existence of three distinct attractors: forest, savanna, and a treeless state. Empirical reconstruction of the basins of attraction indicates that the resilience of the states varies in a universal way with precipitation. These results allow the identification of regions where forest or savanna may most easily tip into an alternative state, and they pave the way to a new generation of coupled climate models.
If plants cannot simultaneously acclimate to shade and drought because of physiological trade‐offs, then plants are expected to be less tolerant to shading under drier conditions. One observation that, at first sight, seems incompatible with this idea is the fact that the establishment of new plants in dry areas is often restricted to shady sites under the canopy of other plants, called “nurse plants.” We use a graphical model to resolve this paradox. The model visualizes how facilitative patterns can be understood from the simultaneous effects of plant canopies on microsite light and moisture, and the growth responses of establishing seedlings to those factors. The approach emphasizes the fact that positive and negative effects of plant canopies always occur simultaneously. In the presented light–water model, facilitation only occurs when the improvement of plant water relations under the canopy exceeds the costs caused by lower light levels. This may be true under dry conditions, whereas in less dry situations, competition rather than facilitation is observed. The model shows how changes in water availability may shift interactions from competitive to facilitative and vice versa, as observed in some field patterns. It is argued that other environmental factors explaining facilitative patterns can be understood in the same context.
In plant-pollinator communities many pollinators are potential generalists and their preferences for certain plants can change quickly in response to changes in plant and pollinator densities. These changes in preferences affect coexistence within pollinator guilds as well as within plant guilds. Using a mathematical model, we study how adaptations of pollinator preferences influence population dynamics of a two-plant-two-pollinator community interaction module. Adaptation leads to coexistence between generalist and specialist pollinators, and produces complex plant population dynamics, involving alternative stable states and discrete transitions in the plant community. Pollinator adaptation also leads to plant-plant apparent facilitation that is mediated by changes in pollinator preferences. We show that adaptive pollinator behavior reduces niche overlap and leads to coexistence by specialization on different plants. Thus, this article documents how adaptive pollinator preferences for plants change the structure and coexistence of plant-pollinator communities.
Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpiredwater subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.