The aim of this research is to present a weather-based forecasting system for apple fire blight (Erwinia amylovora) and downy mildew of grapevine (Plasmopara viticola) under Serbian agroecological conditions and test its efficacy. The weather-based forecasting system contains Numerical Weather Prediction (NWP) model outputs and a disease occurrence model. The weather forecast used is a product of the high-resolution forecast (HRES) atmospheric model by the European Centre for Medium-Range Weather Forecasts (ECMWF). For disease modelling, we selected a biometeorological system for messages on the occurrence of diseases in fruits and vines (BAHUS) because it contains both diseases with well-known and tested algorithms. Several comparisons were made: (1) forecasted variables for the fifth day are compared against measurements from the agrometeorological network at seven locations for three months (March, April, and May) in the period 2012–2018 to determine forecast efficacy; (2) BAHUS runs driven with observed and forecast meteorology were compared to test the impact of forecasted meteorological data; and (3) BAHUS runs were compared with field disease observations to estimate system efficacy in plant disease forecasts. The BAHUS runs with forecasted and observed meteorology were in good agreement. The results obtained encourage further development, with the goal of fully utilizing this weather-based forecasting system.
This study was designed to better understand vegetation’s impact on air maximum (Tmax), minimum (Tmin), and daily temperature range (DTR), as well as seasonality and variability. We selected a flat, under synoptic-scale, northern Serbian region with an operational network of automated weather stations (AWS) for the study. Data were collected directly from the eighteen AWSs placed in the orchard canopy during 2013–2018. Meteorological data, plant phenological data in the form of the BBCH scale, and orchards’ soil characteristics data were collected. Environmental factors influencing the temperature were classified as static (slow or unchangeable) and dynamic (fast-changing). The impact of both factors on maximum, minimum, and daily temperature range and its variability were analyzed. Results show that static factors (like soil texture) affect the annual variation of Tmax, Tmin, and DTR rather than its variability over the season. The dynamic factors, mainly coming from the plant’s phenology, substantially affected the seasonal variability of these variables. Studies like this suffer from missing data and sparse spatial coverage by the AWS network. Therefore, the alternatives of orchard micrometeorological data, nearest climatological station, and ERA5-Land reanalysis data are tested. Both data sets showcased limitations in their applicability, while reanalysis data deviated more from the in-situ measurements, both seasonally and regionally.
Vegetation is a climate modifier: It is a primary modifier, such as the Amazon rain forest, or secondary modifier, such as the agricultural fields of Pannonian lowlands in Central Europe. At periods of winter crop spring renewal and the start of the orchard growing season, enhanced evapotranspiration shifts energy balance partitions from sensible toward latent heat flux. This surface flux alteration converges into the boundary layer, and it can be detected in the daily variations of air temperature and humidity as well as daily temperature range records. The time series of micrometeorological measurements and phenological observations in dominant plant canopies conducted by Forecasting and Reporting Service for Plant Protection of the Republic of Serbia (PIS) are explored to select indices that best record the signatures of plant growth stages in temperature and humidity daily variations. From the timing of extreme values and inflection points of relative humidity (R1 and R2) and normalized daily temperature range (DTR/Td), we identified the following stages: (a) start of flowering (orchard)/spring start of the growing season (crop), (b) full bloom (orchard)/development (crop), (c) maximum LAI reached/yield formation (orchard and crop), and (d) start of dormancy (orchard)/leaf drying (crop). The average day of year (DOY) for dominant plants corresponds to the timing obtained from climatological time series recorded on a representative climate station.
Meteorological conditions significantly impact the biofix, i.e., the time of the first flight of the first overwintering generation of codling moth (Cydia pomonella). In general, the flight activity of codling moths is influenced by a combination of temperature, humidity, and light duration and intensity, while precipitation and strong wind, particularly wind gusts, can stop insects from flying. Our research also considered the impact of atmospheric pressure on codling moth flight.  Data describing biofix used in this study come from the codling moth monitoring in the framework of the PIS observing system. For sixteen locations during the 2012-2022 period, only 101 data sets were analyzed for the locations with the same traps and female pheromones. Since the traps were located in production orchards, to avoid the impact of insecticides on possible errors in the first detection of adults, only locations with a high insect population (with over 100 adults per trap during the season) were selected. Counting is performed daily from the beginning of April each year. Meteorological data for the study are provided from two sources: a) the PIS network of automated weather stations located in the orchards (air temperature and humidity, precipitation), and b) the synop reports from the synoptic stations (atmospheric pressure and wind gust). Our research aims to measure biofix's uncertainty caused by adverse weather conditions (from the codling moth point of view) or events. Starting backward from when an adult is found in the trap, we analyzed the presence of weather conditions that can affect codling moth flight. As a measure of uncertainty, we use the days between trap ketch day and the last day before that when weather conditions allowed adults to fly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.