We present explainable machine learning approaches for the accurate prediction of solvation free energies, enthalpies, and entropies for different ion pairs in various protic and aprotic solvents. As key input...
The coupling of individual models in terms of end-to-end calculations for unit operations in manufacturing processes is a challenging task. We present a probability distribution-based approach for the combined outcomes of parametric and non-parametric models. With this so-called Bayesian predictive ensemble, the statistical moments such as mean value and standard deviation can be accurately computed without any further approximation. It is shown that the ensemble of different model predictions leads to an uninformed prior distribution, which can be transformed into a predictive posterior distribution using Bayesian inference and numerical Markov Chain Monte Carlo calculations. We demonstrate the advantages of our method using several numerical examples. Our approach is not restricted to certain unit operations, and can also be used for the more robust interpretation and assessment of model predictions in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.