Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA). There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells) forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.
Background
Laelaps agilis C.L. Koch, 1836 is one the most abundant and widespread parasitic mite species in the Western Palearctic. It is a permanent ectoparasite associated with the Apodemus genus, which transmits Hepatozoon species via the host’s blood. Phylogenetic relationships, genealogy and host specificity of the mite are uncertain in the Western Palearctic. Here, we investigated the population genetic structure of 132 individual mites across Europe from their Apodemus and Clethrionomys hosts. Phylogenetic relationships and genetic variation of the populations were analyzed using cytochrome c oxidase subunit I (COI) gene sequences.
Results
We recovered three main mtDNA lineages within L. agilis in the Western Palearctic, which differentiated between 1.02 and 1.79 million years ago during the Pleistocene period: (i) Lineage A, including structured populations from Western Europe and the Czech Republic, (ii) Lineage B, which included only a few individuals from Greece and the Czech Republic; and (iii) Lineage C, which comprised admixed populations from Western and Eastern Europe. Contrary to their population genetic differentiation, the lineages did not show signs of specificity to different hosts. Finally, we confirmed that the sympatric congener L. clethrionomydis is represented by a separated monophyletic lineage.
Conclusion
Differences in the depth of population structure between L. agilis Lineages A and C, corroborated by the neutrality tests and demographic history analyses, suggested a stable population size in the structured Lineage A and a rapid range expansion for the geographically admixed Lineage C. We hypothesized that the two lineages were associated with hosts experiencing different glaciation histories. The lack of host specificity in L. agilis lineages was in contrast to the co-occurring highly host-specific lineages of Polyplax serrata lice, sharing Apodemus hosts. The incongruence was attributed to the differences in mobility between the parasites, allowing mites to switch hosts more often.
Polymorphic microsatellite loci were characterised for two louse species, the anopluran Polyplax serrata Burmeister, 1839, parasitising Eurasian field mice of the genus Apodemus Kaup, and the amblyceran Myrsidea nesomimi Palma et Price, 2010, found on mocking birds endemic to the Galápagos Islands. Evolutionary histories of the two parasites show complex patterns influenced both by their geographic distribution and through coevolution with their respective hosts, which renders them prospective evolutionary models. In P. serrata, 16 polymorphic loci were characterised and screened across 72 individuals from four European populations that belong to two sympatric mitochondrial lineages differing in their breadth of host-specificity. In M. nesomimi, 66 individuals from three island populations and two host species were genotyped for 15 polymorphic loci. The observed heterozygosity varied from 0.05 to 0.9 in P. serrata and from 0.0 to 0.96 in M. nesomimi. Deviations from the Hardy-Weinberg equilibrium were frequently observed in the populations of both parasites. Fst distances between tested populations correspond with previous phylogenetic data, suggesting the microsatellite loci are an informative resource for ecological and evolutionary studies of the two parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.