How the replicative Mcm2-7 helicase is activated during replication origin firing remains largely unknown. Our biochemical and structural studies reported here, demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface located on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1, and their cooperation is required for a biochemically stable TopBP1-GINS interaction. The GINI and BRCT4 domains also cooperate during replication origin firing, as revealed by immuno-replacement experiments in Xenopus egg extracts using different sets of mutations in either interface. Furthermore, the TopBP1-GINS interaction is incompatible with simultaneous binding of DNA polymerase epsilon to GINS when bound to Mcm2-7-Cdc45. Our TopBP1-GINS model predicts the coordination of three molecular processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.