In the behaving monkey, inferior parietal lobe cortical neurons combine visual information with eye position signals. However, an organized topographic map of these neurons' properties has never been demonstrated. Intrinsic optical imaging revealed a functional architecture for the effect of eye position on the visual response to radial optic flow. The map was distributed across two subdivisions of the inferior parietal lobule, area 7a and the dorsal prelunate area, DP. Area 7a contains a representation of the lower eye position gain fields while area DP represents the upper eye position gain fields. Horizontal eye position is represented orthogonal to the vertical eye position across the medial lateral extents of the cortices. Similar topographies were found in three hemispheres of two monkeys; the horizontal and vertical gain field representations were not isotropic with a greater modulation found with the vertical. Monte Carlo methods demonstrated the significance of the maps, and they were verified in part using multiunit recordings. The novel topographic organization of this association cortex area provides a substrate for constructing representations of surrounding space for perception and the guidance of motor behaviors.
Functional architectures facilitate orderly transmittal of representations between cortices, allow for local interactions between neurons, and ensure a uniform distribution of feature representations with respect to larger-scale topographies. We sought to correlate such topographies with internal cognitive states. A psychophysical task for which the monkey was required to detect a change in one of two identical peripheral expanding flow fields tested for spatial shifts of attention. The monkey was cued as to which flow would change with a small cue near the fixation points. Reaction time data indicate that the monkey's performance in the optic flow detection task depended on the location of the cue. Using optical imaging of intrinsic signals, we show that a monkey's internally generated locus of attention is correlated with an 800 -860 m patchy topological architecture across the cortical surface of the inferior parietal lobule. The attentional patches vary in location but are stable in spatial frequency. The patches are embedded in a larger-scale and stable representation of eye position. Trial-by-trial analysis of the images indicates that the organizational scheme with simultaneous stable and variable subcomponents occurs within the experiment of 1 d, as well as across days. This novel functional architecture is the first to be correlated with attentional mechanisms and could support a fine-scale functional architecture underlying hemispatial neglect, an attentional deficit caused by parietal lesions.
Distribution of microsaccades can be influenced by attentional cues in a task-specific situation, revealing links between visuomotor performance and covert attention shifts in fast visuomotor perception. Microsaccade orientation is conditioned by objects that attract visual attention and not by the direction in which action is expected to be performed.
Area PEc, a high order association area, is located in the dorsocaudal portion of the superior parietal cortex. PEc neurons encode visual motion signals, especially the direction of stimulus motion. The present study tested if PEc neurons also process visual correlates of self-motion. The extracellular activity of single neurons in response to optic flow stimuli was recorded in two monkeys (Macaca fascicularis) trained in a fixation task. The stimuli were produced by random dots simulating planar motion, radial expansion and radial contraction. A substantial number of PEc neurons were specifically activated by radial optic flow and were selective for the position of the focus of expansion with respect to the fovea. Eccentric positions of the focus of expansion were preferred. Almost all neurons showed opponent excitatory-inhibitory activity to expanding-contracting visual fields. Planar motion elicited very weak responses. Optic flow responsiveness is not entirely explained by classical bar sensitivity in PEc neurons, suggesting that optic flow and classical bar responses could serve different mechanisms in the integration of visuo-motor signals to prepare body movements.
The representation of navigational optic flow across the inferior parietal lobule was assessed using optical imaging of intrinsic signals in behaving monkeys. The exposed cortex, corresponding to the dorsal-most portion of areas 7a and dorsal prelunate (DP), was imaged in two hemispheres of two rhesus monkeys. The monkeys actively attended to changes in motion stimuli while fixating. Radial expansion and contraction, and rotation clockwise and counter-clockwise optic flow stimuli were presented concentric to the fixation point at two angles of gaze to assess the interrelationship between the eye position and optic flow signal. The cortical response depended upon the type of flow and was modulated by eye position. The optic flow selectivity was embedded in a patchy architecture within the gain field architecture. All four optic flow stimuli tested were represented in areas 7a and DP. The location of the patches varied across days. However the spatial periodicity of the patches remained constant across days at ∼950 and 1100 µm for the two animals examined. These optical recordings agree with previous electrophysiological studies of area 7a, and provide new evidence for flow selectivity in DP and a fine scale description of its cortical topography. That the functional architectures for optic flow can change over time was unexpected. These and earlier results also from inferior parietal lobule support the inclusion of both static and dynamic functional architectures that define association cortical areas and ultimately support complex cognitive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.