Highlights d Laser capture microdissection reveals a large panel of enterocyte landmark genes d These genes are used to spatially localize single RNAsequenced enterocytes d Enterocyte function is broadly zonated along the villus axis d Enterocytes traverse a series of cell states during their migration along the villus Authors
The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. However, liver zonation was previously analyzed as a static phenomenon, and liver chronobiology at tissue level resolution. Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time. Using mixed-effect models of mRNA expression and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, most of them showing multiplicative space-time effects. Such dually regulated genes cover key hepatic functions such as lipid, carbohydrate and amino acid metabolism, but also previously unassociated genes, such as protein chaperones. Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation. Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at the sub-lobular scale.
The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.
Malignant cell growth is fueled by interactions between tumor cells and the stromal cells composing the tumor microenvironment. The human liver is a major site of tumors and metastases, but molecular identities and intercellular interactions of different cell types have not been resolved in these pathologies. Here, we apply single cell RNA‐sequencing and spatial analysis of malignant and adjacent non‐malignant liver tissues from five patients with cholangiocarcinoma or liver metastases. We find that stromal cells exhibit recurring, patient‐independent expression programs, and reconstruct a ligand–receptor map that highlights recurring tumor–stroma interactions. By combining transcriptomics of laser‐capture microdissected regions, we reconstruct a zonation atlas of hepatocytes in the non‐malignant sites and characterize the spatial distribution of each cell type across the tumor microenvironment. Our analysis provides a resource for understanding human liver malignancies and may expose potential points of interventions.
To date, the role of pancreatic hormones in pancreatic islet growth and differentiation is poorly understood. To address this issue, we examined mice with a disruption in the gene encoding prohormone convertase 2 (PC2). These mice are unable to process proglucagon, prosomatostatin, and other neuroendocrine precursors into mature hormones. Initiation of insulin (IN) expression during development was delayed in PC2 mutant mice. Cells containing IN were first detected in knockout embryos on d 15 of development, 5 d later than in wild-type littermates. However, the IN(+) cells of d 15 PC2 mutant mice coexpressed glucagon, as did the first appearing beta-cells of controls. In addition, lack of PC2 perturbed the pattern of expression of transcription factors presumed to be involved in the determination of the mature alpha-cell phenotype. Thus, in contrast to controls, alpha-cells of mutant mice had protracted expression of Nkx 6.1 and Pdx-1, but did not express Brn-4. Islets of adult mutant mice also contained cells coexpressing insulin and somatostatin, an immature cell type found only in islets of the wild-type strain during development. In addition to the effects on islet cell differentiation, the absence of PC2 activity resulted in a 3-fold increase in the rate of proliferation of proglucagon cells during the perinatal period. This increase contributed to the development of alpha-cell hyperplasia during postnatal life. Furthermore, the total beta-cell volume was increased 2-fold in adult mutants compared with controls. This increase was due to islet neogenesis, as the number of islets per section was significantly higher in knockout mice compared with wild-type mice, whereas both strains had similar rates of IN cell proliferation. These results indicate that hormones processed by PC2 affected processes that regulate islet cell differentiation and maturation in embryos and adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.