Hereditary spastic paraplegia (HSP) denotes genetically heterogeneous disorders characterized by leg spasticity due to degeneration of corticospinal axons. SPG11 and SPG15 have a similar clinical course and together are the most prevalent autosomal recessive HSP entity. The respective proteins play a role for macroautophagy/autophagy and autophagic lysosome reformation (ALR). Here, we report that spg11 and zfyve26 KO mice developed motor impairments within the same course of time. This correlated with enhanced accumulation of autofluorescent material in neurons and progressive neuron loss. In agreement with defective ALR, tubulation events were diminished in starved KO mouse embryonic fibroblasts (MEFs) and lysosomes decreased in neurons of KO brain sections. Confirming that both proteins act in the same molecular pathway, the pathologies were not aggravated upon simultaneous disruption of both. We further show that PI4K2A (phosphatidylinositol 4-kinase type 2 alpha), which phosphorylates phosphatidylinositol to phosphatidylinositol-4-phosphate (PtdIns4P), accumulated in autofluorescent deposits isolated from KO but not WT brains. Elevated PI4K2A abundance was already found at autolysosomes of neurons of presymptomatic KO mice. Immunolabelings further suggested higher levels of PtdIns4P at LAMP1-positive structures in starved KO MEFs. An increased association with LAMP1-positive structures was also observed for clathrin and DNM2/dynamin 2, which are important effectors of ALR recruited by phospholipids. Because PI4K2A overexpression impaired ALR, while its knockdown increased tubulation, we conclude that PI4K2A modulates phosphoinositide levels at autolysosomes and thus the recruitment of downstream effectors of ALR. Therefore, PI4K2A may play an important role in the pathogenesis of SPG11 and SPG15.
Background Most plant-pathogenic Xanthomonas bacteria harbor transcription activator-like effector (TALE) genes, which function as transcriptional activators of host plant genes and support infection. The entire repertoire of up to 29 TALE genes of a Xanthomonas strain is also referred to as TALome. The DNA-binding domain of TALEs is comprised of highly conserved repeats and TALE genes often occur in gene clusters, which precludes the assembly of TALE-carrying Xanthomonas genomes based on standard sequencing approaches. Results Here, we report the successful assembly of the 5 Mbp genomes of five Xanthomonas strains from Oxford Nanopore Technologies (ONT) sequencing data. For one of these strains, Xanthomonas oryzae pv. oryzae (Xoo) PXO35, we illustrate why Illumina short reads and longer PacBio reads are insufficient to fully resolve the genome. While ONT reads are perfectly suited to yield highly contiguous genomes, they suffer from a specific error profile within homopolymers. To still yield complete and correct TALomes from ONT assemblies, we present a computational correction pipeline specifically tailored to TALE genes, which yields at least comparable accuracy as Illumina-based polishing. We further systematically assess the ONT-based pipeline for its multiplexing capacity and find that, combined with computational correction, the complete TALome of Xoo PXO35 could have been reconstructed from less than 20,000 ONT reads. Conclusions Our results indicate that multiplexed ONT sequencing combined with a computational correction of TALE genes constitutes a highly capable tool for characterizing the TALomes of huge collections of Xanthomonas strains in the future.
Most plant-pathogenic Xanthomonas bacteria harbor transcription activator-like effector (TALE) genes, which function as transcriptional activators of host plant genes and support infection. The entire repertoire of up to 29 TALE genes of a Xanthomonas strain is also referred to as TALome. The DNA-binding domain of TALEs is comprised of highly conserved repeats and TALE genes often occur in gene clusters, which precludes the assembly of TALE-carrying Xanthomonas genomes based on standard sequencing approaches. Here, we report the successful assembly of the 5 Mbp genomes of five Xanthomonas strains from Oxford Nanopore Technologies (ONT) sequencing data. For one of these strains, Xanthomonas oryzae pv. oryzae (Xoo) PXO35, we illustrate why Illumina short reads and longer PacBio reads are insufficient to fully resolve the genome. While ONT reads are perfectly suited to yield highly contiguous genomes, they suffer from a specific error profile within homopolymers. To still yield complete and correct TALomes from ONT assemblies, we present a computational correction pipeline specifically tailored to TALE genes, which yields at least comparable accuracy as Illumina-based polishing. We further systematically assess the ONT-based pipeline for its multiplexing capacity and find that, combined with computational correction, the complete TALome of Xoo PXO35 could have been reconstructed from less than 20,000 ONT reads. Our results indicate that multiplexed ONT sequencing combined with a computational correction of TALE genes constitutes a highly capable tool for characterizing the TALomes of huge collections of Xanthomonas strains in the future.
We here report a family from Libya with three siblings suffering from early onset achalasia born to healthy parents. We analyzed roughly 5000 disease-associated genes by a next-generation sequencing (NGS) approach. In the analyzed sibling we identified two heterozygous variants in CRLF1 (cytokine receptor-like factor 1). Mutations in CRLF1 have been associated with autosomal recessive Crisponi or cold-induced sweating syndrome type 1 (CS/CISS1), which among other symptoms also manifests with early onset feeding difficulties. Segregation analysis revealed compound heterozygosity for all affected siblings, while the unaffected mother carried the c.713dupC (p.Pro239Alafs*91) and the unaffected father carried the c.178T>A (p.Cys60Ser) variant. The c.713dupC variant has already been reported in affected CS/CISS1 patients, the pathogenicity of the c.178T>A variant was unclear. As reported previously for pathogenic CRLF1 variants, cytokine receptor-like factor 1 protein secretion from cells transfected with the c.178T>A variant was severely impaired. From these results we conclude that one should consider a CRLF1-related disorder in early onset achalasia even if other CS/CISS1 related symptoms are missing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.