A simple and efficient Knoevenagel procedure for the synthesis of 2-arylidene indan-1,3-diones is herein reported. These compounds were prepared via ZrOCl2·8H2O catalyzed reactions of indan-1,3-dione with several aromatic aldehydes and using water as the solvent. The 2-arylidene indan-1,3-diones were obtained with 53%-95% yield within 10-45 min. The synthesized compounds were evaluated as inhibitors of the NS2B-NS3 protease of West Nile Virus (WNV). It was found that hydroxylated derivatives impaired enzyme activity with varying degrees of effectiveness. The most active hydroxylated derivatives, namely 2-(4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (14) and 2-(3,4-dihydroxybenzylidene)-1H-indene-1,3(2H)-dione (17), were characterized as noncompetitive enzymes inhibitors, with IC values of 11 μmol L and 3 μmol L, respectively. Docking and electrostatic potential surfaces investigations provided insight on the possible binding mode of the most active compounds within an allosteric site.
Biodiesel production from cheap lipid raw materials is economically welcome, but a high free fatty acids (FFA) content makes it incompatible with traditional alkaline catalysts. Although liquid mineral acids are alternatively used, serious drawbacks such as high corrosiveness and large effluent generation, as well as the impossibility of catalyst reuse compromises its application. Contrarily, solid acid catalysts appear to be an attractive option; however, the water present or generated during FFA esterification provokes the leaching and deactivation of these catalysts. Thus, in this work we have evaluated the use of tin chloride SnCl 2 , which is less corrosive, water tolerant, and a recyclable Lewis acid catalyst, on FFA ethanolysis using waste cooking oil samples (WCO). Additionally, the main kinetic parameters of the reactions were assessed. Compared to pTSA (p-toluenesulfonic-acid), a catalyst also evaluated, SnCl 2 efficiently promoted FFA ethanolysis even in the presence of high amounts of water (ca. 0.1-5.0% w/w). Moreover, the homogeneous SnCl 2 catalyst was easily recovered and reused successively, without loss of activity.
Mayaro virus (MAYV) is a neglected arthropod-borne virus found in the Americas. MAYV infection results in Mayaro fever, a non-lethal debilitating disease characterized by a strong inflammatory response affecting the joints and muscles. MAYV was once considered endemic to forested areas in Brazil but has managed to adapt and spread to urban regions using new vectors, such as Aedes aegypti, and has the potential to cause serious epidemics in the future. Currently, there are no vaccines or specific treatments against MAYV. In this study, the antiviral activity of a series of synthetic cyclic ketones were evaluated for the first time against MAYV. Twenty-four compounds were screened in a cell viability assay, and eight were selected for further evaluation. Effective concentration (EC50) and selectivity index (SI) were calculated and compound 9-(5-(4-chlorophenyl]furan-2-yl)-3,6-dimethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2))-dione (9) (EC50 = 21.5 µmol·L–1, SI = 15.8) was selected for mechanism of action assays. The substance was able to reduce viral activity by approximately 70% in both pre-treatment and post-treatment assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.