Bronchopulmonary dysplasia (BPD) is a chronic lung disease of primarily premature infants that results from an imbalance between lung injury and repair in the developing lung. BPD is the most common respiratory morbidity in preterm infants, which affects nearly 10, 000 neonates each year in the United States. Over the last two decades, the incidence of BPD has largely been unchanged; however, the pathophysiology has changed with the substantial improvement in the respiratory management of extremely low birth weight (ELBW) infants. Here we have attempted to comprehensively review and summarize the current literature on the pathogenesis and pathophysiology of BPD. Our goal is to provide insight to help further progress in preventing and managing severe BPD in the ELBW infants.
Objectives Despite improvements in survival of preterm infants, bronchopulmonary dysplasia (BPD) remains a persistent morbidity. The incidence, clinical course, and current management of severe BPD (sBPD) remain to be defined. To address these knowledge gaps, a multicenter collaborative was formed to improve outcomes in this population. Study Design We performed a “snapshot” in eight neonatal intensive care units (NICUs) on December 17, 2013. A standardized clinical data form for each inpatient born at < 32 weeks was completed and collated centrally for analysis. sBPD was defined as receiving ≥ 30% supplemental oxygen and/or receiving positive pressure ventilation at 36 weeks postmenstrual age (PMA). Results Of a total census of 710 inpatients, 351 infants were born at < 32 weeks and 128 of those (36.5%) met criteria for sBPD. The point prevalence of sBPD varied between centers (11–58%; p < 0.001). Among infants with sBPD there was a variation among centers in the use of mechanical ventilation at 28 days of life (p < 0.001) and at 36 weeks PMA (p = 0.001). We observed differences in the use of diuretics (p = 0.018), inhaled corticosteroids (p < 0.001), and inhaled β-agonists (p < 0.001). Conclusion The high point prevalence of sBPD and variable management among NICUs emphasizes the lack of evidence in guiding optimal care to improve long-term outcomes of this high-risk, understudied population.
Objectives To determine whether the need for invasive mechanical ventilation (iMV) at 36 weeks PMA in patients with severe bronchopulmonary dysplasia (sBPD) identifies those patients at highest risk for tracheostomy or gastrostomy, and to compare sBPD with recent definitions of BPD. Study design Observational study from Jan 2015 to Sept 2019 using data from the BPD Collaborative Registry. Results Five hundred and sixty-four patients with sBPD of whom 24% were on iMV at 36 weeks PMA. Those on iMV had significantly (p < 0.0001) increased risk for tracheostomy or gastrostomy. The overall mortality rate was 3% and the risk for mortality was substantially greater in those on iMV than in those on noninvasive support at 36 weeks PMA (RR 13.8, 95% CI 4.3–44.5, p < 0.0001). When applying the NICHD definition (2016) 44% had Grade III BPD. When applying the NRN definition, 6% had Grade 1 BPD, 70% had Grade 2 BPD, and 24% had Grade 3 BPD. Conclusions Patients with sBPD who were on iMV at 36 weeks had a significantly greater risk of inhospital mortality and survivors had a significantly greater risk of undergoing tracheostomy and/or gastrostomy. The use of type 2 sBPD or Grade 3 BPD would enhance the ability to target future studies to those infants with sBPD at the highest risk of adverse long-term outcomes.
OBJECTIVESPatients supported on extracorporeal membrane oxygenation (ECMO) have an increased incidence of seizures. Phenobarbital (PB) and fosphenytoin (fos-PHT) are common antiepileptic drugs (AEDs) used to manage seizures in the pediatric population; however, it is unknown what effect ECMO has on the serum concentrations of AEDs. The purpose of this study is to evaluate the effect of ECMO on AED serum concentrations.METHODS A retrospective, matched-cohort study was performed in patients younger than 18 years who received ECMO and were treated with intravenous (IV) PB or fos-PHT at Texas Children's Hospital between 2004 and 2014. Patients receiving IV AED therapy and ECMO were matched, based on age, sex, and weight, with patients receiving IV AED therapy without ECMO. The 24-hour cumulative AED dose, serum concentrations, number of doses per serum concentration drawn ratio, volume of distribution, therapeutic serum concentrations, and time to therapeutic serum concentration were compared between both groups. The fos-PHT and PB groups were analyzed in all patients and in neonates only. CONCLUSION Pediatric patients receiving PB on ECMO and neonatal patients receiving fos-PHT on ECMO required larger doses, and in pediatric patients achieved lower serum concentrations, suggesting the necessity for alternative dosing strategies in these populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.