Group 3 innate lymphoid cells (ILC3s) sense environmental signals that are critical for gut homeostasis and host defense. However, the metabolite-sensing G-protein-coupled receptors that regulate colonic ILC3s remain poorly understood. We found that colonic ILC3s expressed Ffar2, a microbial metabolite-sensing receptor, and that Ffar2 agonism promoted ILC3 expansion and function. Deficiency of Ffar2 in ILC3s decreased their in situ proliferation and ILC3-derived interleukin-22 (IL-22) production. This led to impaired gut epithelial function characterized by altered mucus-associated proteins and antimicrobial peptides and increased susceptibility to colonic injury and bacterial infection. Ffar2 increased IL-22 + CCR6 + ILC3s and influenced ILC3 abundance in colonic lymphoid tissues. Ffar2 agonism differentially activated AKT or ERK signaling and increased ILC3-derived IL-22 via an AKT and STAT3 axis. Our findings suggest that Ffar2 regulates colonic ILC3 proliferation and function, and they identify an ILC3-receptor signaling pathway modulating gut homeostasis and pathogen defense.
G protein-coupled receptors have been well described to contribute to the regulation of glucose-stimulated insulin secretion (GSIS). The short-chain fatty acid-sensing G protein-coupled receptor, free fatty acid receptor 2 (FFAR2), is expressed in pancreatic β-cells, and in rodents, its expression is altered during insulin resistance. Thus, we explored the role of FFAR2 in regulating GSIS. First, assessing the phenotype of wild-type and Ffar2(-/-) mice in vivo, we observed no differences with regard to glucose homeostasis on normal or high-fat diet, with a marginally significant defect in insulin secretion in Ffar2(-/-) mice during hyperglycemic clamps. In ex vivo insulin secretion studies, we observed diminished GSIS from Ffar2(-/-) islets relative to wild-type islets under high-glucose conditions. Further, in the presence of acetate, the primary endogenous ligand for FFAR2, we observed FFAR2-dependent potentiation of GSIS, whereas FFAR2-specific agonists resulted in either potentiation or inhibition of GSIS, which we found to result from selective signaling through either Gαq/11 or Gαi/o, respectively. Lastly, in ex vivo insulin secretion studies of human islets, we observed that acetate and FFAR2 agonists elicited different signaling properties at human FFAR2 than at mouse FFAR2. Taken together, our studies reveal that FFAR2 signaling occurs by divergent G protein pathways that can selectively potentiate or inhibit GSIS in mouse islets. Further, we have identified important differences in the response of mouse and human FFAR2 to selective agonists, and we suggest that these differences warrant consideration in the continued investigation of FFAR2 as a novel type 2 diabetes target.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR were structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.
The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.
The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.