A large-scale experiment was performed to measure heat transfer to a massive cylindrical calorimeter engulfed in a 30 minute circular-pool fire. This test simulated the conditions of a truck-sized nuclear waste transport package in a severe fire. The calorimeter inner surface temperature and the flame environment emissive power were measured at several locations as functions of time. An inverse heat conduction technique was used to estimate the net heat flux to the calorimeter. Tall porous fences surrounded the test facility to reduce the effect of wind on the fire. Outside the fences, 2.9 m/s winds blew across the calorimeter axis at the beginning of the test but decreased with time. The wind tilted and moved the fire so that the initial flame environment emissive power was substantially less on the windward side than the leeward side. The calorimeter became more uniformly engulfed as the winds decreased. The maximum heat flux to the calorimeter was 150 MW/m2 on the leeward side at the beginning of the fire, and generally decreased with time. The local variations of calorimeter temperature and heat flux were closely related to the local flame environment emissive power.
Two-dimensional finite element thermal simulations of a generic rail package designed to transport twenty-one spent PWR assemblies were performed for normal transport conditions. Effective thermal conductivity models were employed within the fuel assembly/backfill gas region. Those conductivity models were developed by other investigators assuming the basket wall temperature is uniform. They are typically used to predict the maximum fuel cladding temperature near the package center. The cladding temperature must not exceed specified limits during normal transport. This condition limits the number and heat generation rate of fuel assembles that can transported. The current work shows the support basket wall temperatures in the periphery of the package are highly non-uniform. Moreover the thermal resistance of those regions significantly affects the maximum fuel clad temperature near the package center. This brings the validity of the fuel/backfill gas thermal conductivity models into question. The non-uniform basket wall temperature profiles quantified in this work will be used in future numerical and experimental studies to develop new thermal models of the fuel assembly/backfill gas regions. This will be an iterative process, since the assembly/backfill model affects the predicted basket wall temperature profiles.
Navier-Stokes simulations of three-dimensional flow and augmented convection in a channel with symmetric, transverse grooves on two opposite walls were performed for 180⩽Re⩽1600 using the spectral element technique. A series of flow transitions was observed as the Reynolds number was increased, from steady two-dimensional flow, to traveling two and three-dimensional wave structures, and finally to three-dimensional mixing. Three-dimensional simulations exhibited good agreement with local and spatially averaged Nusselt number and friction factor measurements over the range 800⩽Re⩽1600. [S0022-1481(00)00904-X]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.