Crossover networks are introduced as a new type of interconnection network for applications in optical computing, optical switching, and signal processing. Crossover networks belong to the class of multistage interconnection network. Two variations are presented, the half-crossover network and the full crossover network. An optical system which implements both networks is proposed and demonstrated. Crossover networks can be implemented using the full space-bandwidth product of the optical system with minimal loss of light. It is shown that crossover networks are isomorphic to other multistage networks such as the Banyan and perfect shuffle.
Regular free-space interconnects such as the perfect shuffle and banyan provided by beam splitters, lenses, and mirrors connect optical logic gates arranged in 2-D arrays. An algorithmic design technique transforms arbitrary logic equations into a near-optimal depth circuit. Analysis shows that an arbitrary interconnect makes little or no improvement in circuit depth and can even reduce throughput. Gate count is normally higher with a regular interconnect, and we show cost bounds. We conclude that regularly interconnected circuits will have a higher gate count compared with arbitrarily interconnected circuits using the design techniques presented here and that regular free-space interconnects are comparable with arbitrary interconnects in terms of circuit depth and are preferred to arbitrary interconnects for maximizing throughput.
Four arrays of thirty-two GaAs symmetric self-electrooptic effect devices were optically interconnected to form a looped-pipeline optical digital processor. Several circuits were demonstrated, including two shift registers and a decoder circuit. Clock frequencies of up to 1 MHz were attained. Possible extensions to and limitations of this system are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.