Attack graphs are important tools for analyzing security vulnerabilities in enterprise networks. Previous work on attack graphs has not provided an account of the scalability of the graph generating process, and there is often a lack of logical formalism in the representation of attack graphs, which results in the attack graph being difficult to use and understand by human beings. Pioneer work by Sheyner, et al. is the first attack-graph tool based on formal logical techniques, namely model-checking. However, when applied to moderate-sized networks, Sheyner's tool encountered a significant exponential explosion problem. This paper describes a new approach to represent and generate attack graphs. We propose logical attack graphs, which directly illustrate logical dependencies among attack goals and configuration information. A logical attack graph always has size polynomial to the network being analyzed. Our attack graph generation tool builds upon MulVAL, a network security analyzer based on logical programming. We demonstrate how to produce a derivation trace in the Mul-VAL logic-programming engine, and how to use the trace to generate a logical attack graph in quadratic time. We show experimental evidence that our logical attack graph generation algorithm is very efficient. We have generated logical attack graphs for fully connected networks of 1000 machines using a Pentium 4 CPU with 1GB of RAM.
-Since digital control systems were introduced to the market more than 30 years ago, the operational efficiency and stability gained through their use have fueled our migration and ultimate dependence on them for the monitoring and control of critical infrastructure. While these systems have been designed for functionality and reliability, a hostile cyber environment and uncertainties in complex networks and human interactions have placed additional parameters on the design expectations for control systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.