A new method of hybrid photolithography, Laser Augmented Microlithographic Patterning (LAMP), is described in which direct laser writing is used to define additional features to those made with an inexpensive transparency mask. LAMP was demonstrated with both positive- and negative-tone photoresists, S1813 and SU-8, respectively. The laser written features, which can have sub-micron linewidths, can be registered to within 2.2 µm of the mask created features. Two example structures, an interdigitated electrode and a microfluidic device that can capture an array of dozens of silica beads or living cells, are described. This combination of direct laser writing and conventional UV lithography compensates for the drawbacks of each method, and enables high resolution prototypes to be created, tested, and modified quickly.
In this work a scalable automated approach for fabricating three-dimensional (3D) microgranular crystals consisting of desired arrangements of microspheres using holographic optical tweezers and two-photon polymerization is introduced. The ability to position microspheres as desired within lattices of any configuration allows designers to engineer the behavior of new metamaterials that enable advanced applications (e.g., armor that mitigates or redirects shock waves, acoustic lens for underwater imaging, damage detection, and non-invasive surgery, acoustic cloaking, and photonic crystals). Currently no self-assembly or automated approaches exist with the flexibility necessary to This article is protected by copyright. All rights reserved.2 place specific microspheres at specific locations within a crystal. Moreover, most pick-and-place approaches require the manual assembly of spheres one by one and thus do not achieve the speed and precision required to repeatably fabricate practical volumes of engineered crystals. In this paper, the rapid assembly of 4.86 μm-diameter silica spheres within differently packed 3D crystallattice examples of unprecedented size using fully automated optical tweezers is demonstrated. The optical tweezers independently and simultaneously assemble batches of spheres that are dispensed to the build site via an automated syringe pump where the spheres are then joined together within previously unattainable patterns by curing regions of photocurable prepolymer between each sphere using two-photon polymerization.
Main TextMicrogranular crystals [1][2][3] have been a topic of much interest in recent years because of their Received: ((will be filled in by the editorial staff))Revised: ((will be filled in by the editorial staff))
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.