The results of the detailed investigations of behavior of lignites Kolubara and Kovin, in fluidized bed combustion are presented in the paper. Investigation was carried out due to the interest of the Serbian Electric Power Production Company to use CFBC boilers in the process of refurbishment of old pulverized coal combustion boilers. As a part of a feasibility study for CFBC use in power plants in Serbia, investigation of combustion characteristics of lignites was performed using original methodology introduced many years ago by Laboratory for Thermal Engineering and Energy. Methodology was approved by numerous investigations of more than 20 Yugoslav coals for FBC combustion, with the aim to determine design data for bubbling FBC boilers. The main attention in present investigation was paid to the problem of using methodology developed for bubbling FBC in the conditions present in CFBC boilers. Four samples of Kolubara lignite, with heat capacity from 2.5 to 8.5 MJ/kg, and different ash contents were investigated, and also lignite Kovin in the same range of heat capacity. Investigations were performed in three phases: (1) ultimate and proximate analysis, determination of ash sintering temperature by standard method and in fluidized bed laboratory oven, (2) investigations in laboratory fluidized bed furnace and determination of coal particle fragmentation, burning rate, start-up temperature and self-sulfure-capture and (3) investigation of combustion in pilot-plant in stationary combustion conditions. In conclusion, suitability of results obtained in BFBC conditions is approved, and earlier statement that lignites are suitable for BFBC is confirmed by the statement that lignites are even more suitable for burning in CFBC boilers. Considering differences between combustion and flow conditions in bubbling and circulating FBC boilers, behavior of the lignites in CFBC is discussed in details and optimal regime parameters of the CFBC boilers are determined. The results obtained will be used by Serbian Electric Power Production Company for evaluation of bid for CFBC boiler implementation in refurbishment of old thermal power plants.
The electrostatic precipitator system of the lignite fired 350 MWe unit B1 of Thermal Power Plant Kostolac B has been modernized during 2014. The results of complex in site measurements, performed in the frame of performance control test at the beginning of the exploitation period of the upgraded electrostatic precipitator proved that, under normal and guarantee working conditions of the boiler and precipitator, the emission of particulate matter do not exceed limiting value. After the period of precipitator further adjustments, five series of measurements in the frame of acceptance test were performed in accordance with relevant standards. This paper presents results of the investigation of particulate matter concentration, laboratory analysis of the lignite, fly and bottom ash samples, working parameters of the unit and upgraded electrostatic precipitator as well as results of the calculations. The averaged mean particulate concentration at the exit of upgraded electrostatic precipitator of the unit B1 during Acceptance test was below guaranteed value. It is confirmed that adjustments of electrostatic precipitator electrical parameters have improved electrostatic precipitator efficiency, as well that electrostatic precipitatorcould work highly efficiently in energy save mode with lower power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.