The assessment of environmental radioactivity much relies on radionuclide content in soil. This stems from the significant contribution of soil to both external and internal exposure to ionising radiation via direct emission of gamma radiation and soil-to-plant radionuclide transfer, respectively. This motivated us to carry out a systematic research on the radioactivity of soil in Croatia to obtain relevant data that can be used as a basis for understanding the related effects of geomorphological, biogeographical, and climatological properties of the environment. We collected samples of the surface layer of uncultivated soil (0–10 cm) at 138 sites from all over the country and measured them for radionuclide activity concentrations by means of high-resolution gamma-ray spectrometry. This resulted in radioactivity maps containing data on activity concentrations of representative radionuclides in the environment. In this paper, which is the first in our two-part presentation, we focus on the naturally occurring 232Th and 238U decay chains and their correlations with the diversity of Croatian regions. For both of the chains, activity concentrations were the highest in the Dinaric region, the lowest in the Pannonian region, and intermediate in the Adriatic region. Relatively high concentrations of 226Ra in the soil of the Dinaric region implied a possibility of an enhanced emanation of its progeny 222Rn into the air. Activity concentrations of 210Pb were additionally elevated in areas with dense vegetation, most probably due to an atmospheric deposition of airborne 210Pb onto the surface of plants and their eventual decomposition on the ground.
Three novel cadmium(II) coordination compounds, the dimeric [Cd(CH3COO)2(nia)2]2 (1), the polymeric {[Cd(nia)4](ClO4)2}n (2), and the monomeric [Cd(H2O)3(nia)3](ClO4)2·nia (3), were prepared in the reactions of the nicotinamide (pyridine-3-carboxamide, nia) with the corresponding cadmium(II) salts. All prepared compounds were characterized by elemental analyses, FT-IR spectroscopy, TGA/DTA, and single crystal X-ray analysis. The impact of anions (acetate, perchlorate) and solvent used on the dimensionality of cadmium(II) complexes and the cadmium(II) coordination environment was investigated. The bridging capabilities of acetate ions enabled the formation of dimers in the crystal structure of 1. It was shown that the dimensionality of perchlorate complexes depends on the solvent used. The coordination polymer 2 is isolated from an ethanol solution, while monomeric compound 3 was obtained by using a water/ethanol mixture as a solvent. The pentagonal-bipyramidal coordination of cadmium(II) was found in the presence of chelating and bridging acetate ions in 1. In the presence of non-coordinating perchlorate anions in 2 and 3, the coordination geometry of cadmium(II) is found to be octahedral. The supramolecular amide-amide homosynthon R22(8) was preserved in the hydrogen-bonded frameworks of all three compounds.
We took samples of uncultivated soil from the surface layer (0–10 cm) at 138 sites from all over Croatia and measured their radionuclide activity concentrations with high-resolution gamma-ray spectrometry. This second part of our report brings the results on 40K and 137Cs to complement those on the 232Th and 238U decay chains addressed in the first part. Together they give the most complete picture of radioactivity of Croatian soil so far. Activity concentrations of 40K were the highest in the Pannonian region, and there was an opposite trend for 137Cs. We found that the concentrations of 137Cs tended to increase with altitude, annual precipitation, and vegetation density. The concentration ratio of 137Cs and K in soil, which indicates the potential for 137Cs entering food chains via uptake by plants, was the lowest in agriculturally important areas in the east of the Pannonian region. In addition, we used the obtained results on activity concentrations to calculate the related absorbed dose rate as a measure of external exposure to ionising radiation from soil. The sum of the absorbed dose rates for naturally occurring radionuclides and 137Cs showed that external exposure was generally the highest in the Dinaric region and Istrian Peninsula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.