The acquisition of cellular invasiveness by breast epithelial cells and subsequent transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a critical step in breast cancer progression. Little is known about the molecular dynamics governing this transition. We have previously shown that overexpression of the transcriptional regulator TBX3 in DCIS‐like cells increases survival, growth, and invasiveness. To explore this mechanism further and assess direct transcriptional targets of TBX3 in a high‐resolution, isoform‐specific context, we conducted genome‐wide chromatin‐immunoprecipitation (ChIP) arrays coupled with transcriptomic analysis. We show that TBX3 regulates several epithelial–mesenchymal transition (EMT)‐related genes, including SLUG and TWIST1 . Importantly, we demonstrate that TBX3 is a direct regulator of SLUG expression, and SLUG expression is required for TBX3‐induced migration and invasion. Assessing TBX3 by immunohistochemistry in early‐stage (stage 0 and stage I) breast cancers revealed high expression in low‐grade lesions. Within a second independent early‐stage non‐high‐grade cohort, we observed an association between TBX3 level in the DCIS and size of the invasive focus. Additionally, there was a positive correlation between TBX3 and SLUG, and TBX3 and TWIST1 in the invasive carcinoma. Pathway analysis revealed altered expression of several proteases and their inhibitors, consistent with the ability to degrade basement membrane in vivo . These findings strongly suggest the involvement of TBX3 in the promotion of invasiveness and progression of early‐stage pre‐invasive breast cancer to invasive carcinoma through the low‐grade molecular pathway. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
BackgroundThe estrogen receptor (ER) is a ligand-dependant transcription factor expressed in many breast cancers and is the target of many endocrine-based cancer therapies. Genome-wide studies have shown that the ER binds to gene-specific enhancer regions in response to β-estradiol (E2) which undergo transcription producing noncoding enhancer RNA (eRNA). While eRNAs are important for transcriptional activation of neighboring genes, the mechanism remains poorly understood.ResultsUsing ChIP-Seq we generate a global profile of thymine DNA glycosylase (TDG), an ER coactivator that plays an essential role in DNA demethylation, in response to E2 in the MCF7 breast cancer cell line. Remarkably, we found that in response to E2 TDG localized to enhancers which also recruit ERα, RNA Pol II and other coregulators and which are marked by histone modifications indicative of active enhancers. Importantly, depletion of TDG inhibits E2-mediated transcription of eRNAs and transcription of ER-target genes. Functionally, we find that TDG both sensitizes MCF7 cells to tamoxifen-mediated cytostasis and increases migration and invasion of MCF7 cells.ConclusionsTaken together we find that TDG plays a central role in mediating transcription at a subset of enhancers and governs how MCF7 cells respond to both estrogenic and anti-estrogenic compounds and may be an effective therapeutic target.Electronic supplementary materialThe online version of this article (10.1186/s13072-018-0176-2) contains supplementary material, which is available to authorized users.
BackgroundTBX3 is a T-box transcription factor repressor that is elevated in metastatic breast cancer and is believed to promote malignancy of tumor cells, possibly by promoting cell survival and epithelial-mesenchymal transition.MethodsThe relative expression of TBX3 was assessed in the 21T cell lines which were derived from an individual patient and represent three distinct stages of breast cancer progression: 21PT, atypical ductal hyperplasia; 21NT, ductal carcinoma in situ; and 21MT-1, invasive mammary carcinoma. Two different isoforms of TBX3 (TBX3iso1 and TBX3iso2) were overexpressed to evaluate cell survival/colony forming ability, growth, and invasion in the ductal carcinoma in situ-like 21NT cell line using an in vitro Matrigel model of cancer progression. In addition, TBX3 expression was knocked down to evaluate the effects of downregulating TBX3 on the invasive mammary carcinoma-like 21MT-1 cell line. Finally, PCR array profiling was used to assess alterations in gene expression due to TBX3 overexpression in the 21NT cells.ResultsTBX3 is abundant in the invasive 21MT-1 cell line, while being minimally expressed in the non-invasive 21NT and 21PT cell lines. Overexpression of either TBX3iso1 or TBX3iso2 in 21NT cells resulted in increased cell survival/colony forming ability, growth vs. apoptosis and invasion in Matrigel. In contrast, short hairpin RNA-mediated knockdown of TBX3 in the 21MT-1 cells resulted in smaller colonies, with a more regular, less dispersed (less infiltrative) morphology. Array profiling of the 21NT TBX3 iso1 and iso2 transfectants showed that there are common alterations in expression of several genes involved in signal transduction, cell cycle control/cell survival, epithelial-mesenchymal transition and invasiveness.ConclusionsOverall, these results indicate that TBX3 (isoform 1 or 2) expression can promote progression in a model of early breast cancer by altering cell properties involved in cell survival/colony formation and invasiveness, as well as key regulatory and EMT/invasiveness-related gene expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.