In this paper, the steady flow and heat transfer of an incompressible electrically conducting micropolar fluid through a parallel plate channel is investigated. The upper and lower plate have been kept at the two constant different temperatures and the plates are electrically insulated. The applied magnetic field is perpendicular to the flow, while the Reynolds number is significantly lower than one i.e. the considered problem is in induction-less approximation. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained. The influences of each of the governing parameters on velocity, heat transfer on the plates (Nusselt number), flow rate and skin friction are discussed with the aid of graphs.
The article presents a mathematical model for pressure growth in the line supplying the engine KAMAZ with cryogenic fuel under specific insulation conditions. By using the heat balance equation the model in a simple linear form is obtained. This makes the model suitable for use in solving practical tasks related to the design of a liquefied natural gas engine fuel system. According to the above-mentioned method, the geometric parameters of the section of the main elements are determined under different external conditions and the boundary parameters of the gas fuel (maximum and minimum values of pressure, temperature, and flow). These data are necessary to determine the consumption, hydraulic and project features of the project. Fuel pipes are optimized (for hydraulic resistance, pressure and flow impulses, structural strength) to improve the accuracy of fuel dosing. The adequacy of the model was tested on a special modified test stand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.