Assessment of portion sizes is an important factor for the accuracy of food consumption surveys. The objective of this study was to develop and validate a food atlas of commonly consumed foods in the Balkan region in order to improve the accuracy of portion size estimation for food consumption surveys. A list of 135 foods and their portion sizes was based on previously conducted food consumption surveys in this region. Food was cooked, measured and served in three or four portion sizes right before being photographed. A validation study was conducted through the visual perception method. Without receiving training on usage of the food picture book, participants were asked to evaluate two portion sizes of 20 selected foods by comparison with a photo series of each food. Portion sizes were evaluated by 18 nutrition professionals and 17 lay individuals who had no nutritional education. Mean differences and the standard deviations of the mean differences (SD) between the portions estimated by each participant and the served portion were calculated. The percentages of participants who selected the correct, adjacent or distant portion size also were calculated. The number of food items that were quantified within the predefined acceptable range (i.e., mean difference < ∣ 0·7 ∣ and SD < 1) was 16 (80%) among lay individuals and 17 (85%) among nutritional professionals. Among 16 photo series that were assessed as “acceptable,” the percentage of all participants, who selected the correct picture, was between 44.3 and 82.9%, with an average of 60.2%. Only three foods were assessed correctly by <50% participants. The percentage of participants who selected the correct or adjacent serving size was above 98% for both lay and professional evaluators. This is the first food atlas containing representative foods and recipes commonly consumed in the Balkan region. However, further adjustments of the methodology should include larger number of food items to be tested, involvement of more participants and provision of training for the users of the food atlas. This food atlas could be used in food consumption surveys in the Balkan region after further testing and validation.
The prevalence of obesity and dyslipidemia has increased worldwide. The role of trace elements in the pathogenesis of these conditions is not well understood. This study examines the relationship between dietary zinc (Zn) intake and plasma concentrations of Zn, copper (Cu) and iron (Fe) with lipid profile indicators, fatty acid composition in plasma phospholipids and desaturase enzyme activities in a dyslipidemic population. The role of the newly proposed biomarker of Zn status, the linoleic:dihomo-gama-linolenic acid (LA:DGLA) ratio, in predicting Zn status of dyslipidemic subjects has been explored. The study included 27 dyslipidemic adults, 39-72 years old. Trace elements were determined using atomic absorption spectrometry and fatty acid composition by a liquid gas chromatography. Desaturase activities were calculated from product-precursor fatty acid ratios. Dietary data were obtained using 24 h recall questionnaires. Insufficient dietary intake of Zn, low plasma Zn concentrations and an altered Cu:Zn ratio is related to modified fatty acid profile in subjects with dyslipidemia. Plasma Zn status was associated with obesity. There was no correlation between dietary Zn intake and plasma Zn status. The LA:DGLA ratio was inversely linked to dietary Zn intake. Cu, in addition to Zn, may directly or indirectly, affect the activity of desaturase enzymes. region of Europe (54% for both sexes). Successful treatment of dyslipidemia significantly reduces morbidity and mortality from cardiovascular diseases [7]. Basically 10% reduction in serum lipid levels has been reported to result in a 50% reduction in heart disease within 5 years [1].Trace elements have crucial roles in metabolism, growth, immunological and neurological functions [8][9][10]. Zinc (Zn) is required for an adequate activity of more than 300 enzymes involved in protein synthesis, fatty acid metabolism, reproduction and oxidative clearance [11]. Iron (Fe) is needed for proper oxygen transport, while copper (Cu) is important for the oxido-reduction and detoxification and is involved in growth, development of cellular elements of arterial walls, lipoprotein metabolism and immune function [9,12,13]. The concentrations of serum/plasma minerals Zn, Cu and Fe are associated with the development of chronic diseases [10,14,15]. Deficiency in microelements leads to an increase in fat deposition and obesity [16]. Hypoferremia is often seen in people suffering from hypertension and plasma Zn concentrations have been directly correlated with total cholesterol and LDL-C levels [15,17]. Zn, Cu and Fe plasma levels are related to the extent of myocardial damage [18]. Epidemiological studies show a direct correlation between low plasma Zn and Fe concentrations and increased risk of cardiovascular diseases [19]. Elevated plasma levels of Cu were reported in patients with coronary artery disease [20]. Although deficiencies of trace elements may alter metabolism of lipids and lipoproteins, the mechanism of their action is not yet completely understood. The fatty acid (FA)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.