Purpose
The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.
Design/methodology/approach
Due to presence of cracks the dynamic characteristics of structure change. The change in dynamic behavior has been used as one of the criteria of fault diagnosis for structures. Major characteristics of the structure which undergo change due to presence of crack are: natural frequencies, the amplitude responses due to vibration and the mode shapes. Therefore, an attempt has been made to formulate a smart technique for minimizing the amplitude of vibration for crack cantilever beam structures. In the analysis both single and double cracks are taken into account.
Findings
The results of the active vibration control experiments proved that piezoelectric sensor/actuator pair is an effective sensor and actuator configuration for active vibration control to reduce the amplitude of vibration for closed-loop system.
Originality/value
It is necessary that structures must safely work during its service life, but damages initiate a breakdown period on the structures which directly affect the industrial growth. It is a recognized fact that dynamic behavior of structures changes due to presence of crack. It has been observed that the presence of cracks in structures or in machine members leads to operational problem as well as premature failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.