The observational 19 F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the a p F , Ne 19 22
The main source of 19F in the universe has not yet been clearly identified and this issue represents one of the unanswered questions of stellar modeling. This lack of knowledge can be due to the 19F(α, p)22Ne reaction cross-section that has proven to be difficult at low energies: direct measurements stop only at about ∼660 keV, leaving roughly half of the astrophysical relevant energy region (from 200 keV to 1.1 MeV) explored only by R-matrix calculations. In this work, we applied the Trojan Horse Method to the quasi-free three-body 6Li(19F, p22Ne)d reaction performed at E
beam = 6 MeV in order to indirectly study the 19F(α, p)22Ne reaction in the sub-Coulomb energy region. In this way, we obtained the cross-section and the reaction rate in the temperature region of interest for astrophysics and free from electron screening effects. A brief analysis of the impact of the new measured reaction rate in AGB star nucleosynthesis is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.