. In contrast to this single mode of killing of protozoa, we have recently proposed a biphasic model by which L. pneumophila kills macrophages, in which the first phase is manifested through the induction of apoptosis during early stages of the infection, followed by an independent and temporal induction of necrosis during late stages of intracellular replication. Here we show that, similar to the protozoan host, the induction of necrosis and cytolysis of macrophages by L. pneumophila is mediated by the pore-forming toxin or activity. This activity is temporally and maximally expressed only upon termination of bacterial replication and correlates with cytolysis of macrophages and alveolar epithelial cells in vitro. We have identified five L. pneumophila mutants defective in the pore-forming activity. The phagosomes harboring the mutants do not colocalize with the late endosomal or lysosomal marker Lamp-1, and the mutants replicate intracellularly similar to the parental strain. Interestingly, despite their prolific intracellular replication, the mutants are defective in cytotoxicity and are "trapped" within and fail to lyse and egress from macrophages and alveolar epithelial cells upon termination of intracellular replication. However, the mutants are subsequently released from the host cell, most likely due to apoptotic death of the host cell. Data derived from cytotoxicity assays, confocal laser scanning microscopy, and electron microscopy confirm the defect in the mutants to induce necrosis of macrophages and the failure to egress from the host cell. Importantly, the mutants are completely defective in acute lethality (24 to 48 h) to intratracheally inoculated A/J mice. We conclude that the poreforming activity of L. pneumophila is not required for phagosomal trafficking or for intracellular replication. This activity is expressed upon termination of bacterial replication and is essential to induce cytolysis of infected macrophages to allow egress of intracellular bacteria. In addition, this activity plays a major role in pulmonary immunopathology in vivo.
SummaryFrancisella tularensis is an intracellular bacterial pathogen, and is a category A bioterrorism agent. Within quiescent human macrophages, the F. tularensis pathogenicity island (FPI) is essential for bacterial growth within quiescent macrophages. The F. tularensis-containing phagosome matures to a late endosome-like stage that does not fuse to lysosomes for 1-8 h, followed by gradual bacterial escape into the macrophage cytosol. Here we show that the FPI protein IglD is essential for intracellular replication in primary human monocyte-derived macrophages (hMDMs). While the parental strain replicates robustly in pulmonary, hepatic and splenic tissues of BALB/c mice associated with severe immunopathologies, the isogenic iglD mutant is severely defective. Within hMDMs, the iglD mutant-containing phagosomes mature to either a late endosome-like phagosome, similar to the parental strain, or to a phagolysosome, similar to phagosomes harbouring the iglC mutant control. Despite heterogeneity and alterations in phagosome biogenesis, the iglD mutant bacteria escape into the cytosol faster than the parental strain within hMDMs and pulmonary cells of BALB/c mice. Co-infections of hMDMs with the wild-type strain and the iglD mutant, or super-infection of iglD mutantinfected hMDMs with the wild-type strain show that the mutant strain replicates robustly within the cytosol of hMDMs coinhabited by the wild strain. However, when the wild-type strain-infected hMDMs are super-infected by the iglD mutant, the mutant fails to replicate in the cytosol of communal macrophages. This is the first demonstration of a F. tularensis novel protein essential for proliferation in the macrophage cytosol. Our data indicate that F. tularensis transduces signals to the macrophage cytosol to remodel it into a proliferative niche, and IglD is essential for transduction of these signals.
Legionella pneumophila replicates within alveolar macrophages, and possibly, alveolar epithelial cells and also within protozoa in the aquatic environment. Here we characterize an L. pneumophila mutant defective in the HtrA/DegP stress-induced protease/chaperone homologue and show that HtrA is indispensable for intracellular replication within mammalian macrophages and alveolar epithelial cells and for intrapulmonary replication in A/J mice. Importantly, amino acid substitutions of two conserved residues in the catalytic domain of (H 103 ¦R and S 212 ¦A) and in-frame deletions of either or both of the two conserved PDZ domains of HtrA abolish its function. Interestingly, the htrA mutant exhibits a parental-type phenotype in intracellular replication within the protozoan host Acanthamoeba polyphaga. We used a promoterless lacZ fusion to the htrA promoter to probe the phagosomal microenvironment harboring L. pneumophila within macrophages and within A. polyphaga for the exposure to stress stimuli. The data show that expression through the htrA promoter is induced by 12,000-to 20,000-fold throughout the intracellular infection of macrophages but its induction is by 120-to 500-fold within protozoa compared to in vitro expression. Data derived from confocal laser scanning microscopy reveal that in contrast to the parental strain, phagosomes harboring the htrA mutant within U937 macrophages colocalize with the late endosomal-lysosomal marker LAMP-2, similar to killed L. pneumophila. Coinfection experiments examined by confocal laser scanning microscopy show that in communal phagosomes harboring both the parental strain and the htrA mutant, replication of the mutant is not rescued, while replication of a dotA mutant control, which is normally trafficked into a phagolysosome, is rescued by the parental strain. Our data show, for the first time, that the stress response by L. pneumophila (mediated, at least in part, by HtrA) is indispensable for intracellular replication within mammalian but not protozoan cells.
The C-terminus of IcmT is essential for pore formation and for intracellular trafficking of Legionella pneumophila within Acanthamoeba polyphaga respectively, in intracellular growth in A. polyphaga, and the respective defects correlated with fusion of the bacterial phagosomes to lysosomes. Taken together, the data showed that the C-terminus domain of IcmT is essential for the pore-forming activity and is required for intracellular trafficking and replication within A. polyphaga, but not within mammalian cells. IntroductionLegionella pneumophila, the bacterium responsible for the acute pneumonia designated Legionnaire's disease, is able to grow within cells in the alveolar spaces . In the environment, this bacterium replicates within protozoa (Rowbotham, 1980;1986). Intracellular replication is culminated in pore formationmediated cytolysis of the protozoan host and subsequent bacterial egress (Gao and Abu Kwaik, 2000a). At least 15 species of protozoa support the intracellular growth of L. pneumophila, and bacterial replication within amoebae plays a major role in bacterial ecology and pathogenesis .Infection of both mammalian and protozoan cells by L. pneumophila shares similar mechanisms (Gao et al., 1997;. After entry into both host cells, L pneumophila modulates the biogenesis of the vacuole into a replicative niche, which does not fuse to lysosomal compartments and is subsequently surrounded by mitochondria and the rough endoplasmic reticulum Abu Kwaik et al., 1998a). The type IV Dot/Icm secretion system is essential for evasion of lysosomal fusion Vogel et al., 1998). After termination of intracellular replication, L. pneumophila induces expression of the pore-forming toxin, which is essential for cytolysis of the host cell and subsequent bacterial egress (Byrne and Swanson, 1998;Alli et al., 2000). Egress from host cells is a fundamental step in the life cycle of intracellular pathogens that allows the organism to spread to a new susceptible host cell and to search for a new replication niche.Mutants defective in egress from the host cell upon termination of intracellular replication have been isolated in our laboratory and designated rib (release of intracellular bacteria) (Alli et al., 2000;Gao and Abu Kwaik, 2000a SummaryWe have shown previously that the five rib (release of intracellular bacteria) mutants of Legionella pneumophila are competent for intracellular replication but defective in pore formation-mediated cytolysis and egress from protozoan and mammalian cells. The rib phenotype results from a point mutation (deletion) DG 544 in icmT that is predicted to result in the expression of a protein truncated by 32 amino acids from the C-terminus. In contrast to the rib mutants that are capable of intracellular replication, an icmT null mutant was completely defective in intracellular replication within mammalian and protozoan cells, in addition to its defect in pore formation-mediated cytolysis. The icmT wild-type allele complemented the icmT null mutant for both defects of intracellular replicati...
Listeria monocytogenes has been recognized as a significant pathogen, occurring worldwide, capable of causing animal and human infections. In its most severe form, listeriosis is an invasive disease that affects immunocompromised patients. Additionally, pregnant women represent a high-risk group for L. monocytogenes infection. Abortion, stillbirth or severe neonatal infection can be the serious outcome of such an infection. In an experimental murine model of pregnancy-associated listeriosis we studied the impact of L. monocytogenes on the maternal immune response and pregnancy outcome. In comparison to virgin animals, pregnant mice mounted lower levels of protective cytokines and were unable to eliminate the pathogen. The impaired maternal immune response that has been found both on the systemic and local level, facilitated bacterial multiplication in the liver, placenta and ultimately in the fetal tissues. This resulted in severe necrotizing hemorrhagic hepatitis and Listeria-induced placental necrosis, increasing the incidence of postimplantation loss and poor pregnancy outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.