Objective Unlike currently approved adenosine diphosphate (ADP) receptor antagonists, the new diadenosine tetraphosphate derivative GLS-409 targets not only P2Y12 but also the second human platelet ADP receptor P2Y1, and may therefore be a promising antiplatelet drug candidate. The current study is the first to investigate the in vivo antithrombotic effects of GLS-409. Approach and Results We studied (1) the in vivo effects of GLS-409 on agonist-stimulated platelet aggregation in anesthetized rats, (2) the antithrombotic activity of GLS-409 and the associated effect on the bleeding time in a canine model of platelet-mediated coronary artery thrombosis, and (3) the inhibition of agonist-stimulated platelet aggregation by GLS-409 versus selective P2Y1 and P2Y12 inhibition in vitro in samples from healthy human subjects before and 2 hours after aspirin intake. In vivo treatment with GLS-409 significantly inhibited ADP- and collagen-stimulated platelet aggregation in rats. Further, GLS-409 attenuated cyclic flow variation, i.e., platelet-mediated thrombosis, in vivo in our canine model of unstable angina. The improvement in coronary patency was accompanied by a non-significant 30% increase in bleeding time. Of note, GLS-409 exerted its effects without affecting rat and canine hemodynamics. Finally, in vitro treatment with GLS-409 showed effects similar to that of cangrelor and the combination of cangrelor with the selective P2Y1 inhibitor MRS 2179 on agonist-stimulated platelet aggregation in human platelet-rich plasma and whole blood before and 2 hours after aspirin intake. Conclusions Synergistic inhibition of both P2Y1 and P2Y12 ADP receptors by GLS-409 immediately attenuates platelet-mediated thrombosis and effectively blocks agonist-stimulated platelet aggregation irrespective of concomitant aspirin therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.