Protein‐film square‐wave voltammetry of uniformly adsorbed molecules of redox lipophilic enzymes is applied to study their electrochemical properties, when a reversible follow‐up chemical reaction is coupled to the electrochemically generated product of enzyme's electrode reaction. Theoretical consideration of this so‐called “surface ECrev mechanism” under conditions of square‐wave voltammetry has revealed several new aspects, especially by enzymatic electrode reactions featuring fast electron transfer. We show that the rate of chemical removal/resupply of electrochemically generated Red(ads) enzymatic species, shows quite specific features to all current components of calculated square‐wave voltammograms and affects the electrode kinetics. The effects observed are specific for this particular redox mechanism (surface ECrev mechanism), and they got more pronounced at high electrode kinetics of enzymatic reaction. The features of phenomena of “split net‐SWV peak” and “quasireversible maximum”, which are typical for surface redox reactions studied in square‐wave voltammetry, are strongly affected by kinetics and thermodynamics of follow‐up chemical reaction. While we present plenty of relevant voltammetric situations useful for recognizing this particular mechanism in square‐wave voltammetry, we also propose a new approach to get access to kinetics and thermodynamics of follow‐up chemical reaction. Most of the results in this work throw new insight into the features of protein‐film systems that are coupled with chemical reactions.
Square‐wave voltammetry (SWV) of so‐called “surface redox reactions” is seen as a simple and efficient tool to quantify large number of drugs, physiologically active substances and other important chemicals. It also provides elegant methods to get access to relevant kinetic and thermodynamic parameters related to many lipophilic compounds. Moreover, with this technique we can study activity of various enzymes by exploring the “protein‐film voltammetry” set up. In this work, we focus on theoretical SWV features of four complex surface electrode mechanisms, in which the electron exchange between the working electrode and the studied redox substrate takes place in two successive steps. While we present large number of calculated square‐wave voltammograms, we give hints to recognize particular two‐step surface mechanism, but also to distinguish it from other similar mechanisms. We present plenty of relevant aspects of surface two‐step surface EE, two‐step surface ECE and surface catalytic EEC’ mechanisms. Moreover, we present for the first time a series of theoretical results related to two‐step surface EECrev mechanism (i. e. two‐step surface reaction coupled to follow‐up reversible chemical step). The simulated voltammetric patterns presented in this work can bring relevant aspects to resolve some experimental situations met in voltammetry of many redox enzymes and other important substances whose electrochemical transformation occurs in two‐steps.
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Redox mechanisms in which a consecutive two‐step electrode transformation occurs, and the product generated in the second electrochemical step at the electrode surface is coupled to a follow‐up irreversible chemical reaction, is theoretically considered under conditions of square‐wave voltammetry. The electrochemical description of considered systems is a “surface EECirr mechanism”. With the methodology named “protein‐film square‐wave voltammetry” we provide theoretical information on kinetics and thermodynamics of many lipophilic enzymes containing quinones or polyvalent cations of transient metals as redox active sites. We address theoretically situations of energetically separated square‐wave voltammetric peaks for at least −150 mV at potential scale. We also consider also a complex scenario of a single voltammetric peak, hiding in its shape both the features of electrode steps (occurring at same potential) and the chemical reaction. We pay a particular attention on how to distinguish the surface two‐step EECirr mechanism from a simple one‐step surface ECirr mechanism, but also from other two‐step surface mechanisms. While presenting plenty of calculated square‐wave voltammograms relevant to many enzymatic systems, we point out several simple features that allow kinetic characterization of studied mechanism from time‐independent experiments at constant scan rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.