This work is focused in the study of analytic anisotropic solutions to Einstein's field equations, describing spherically symmetric and static configurations by way of the gravitational decoupling through the method of Minimal Geometric Deformation (MGD). For this we apply MGD to Heintzmann's solution obtaining two new analytic and well behaved anisotropic solutions, in which all their parameters such as the effective density, the effective radial and tangential pressure, as well as radial and tangential sound speed, fulfill each of the requirements for the physical acceptability available in the literature.
We provide an algorithm that shows how to decouple gravitational sources in Pure Lovelock gravity. This method allows to obtain several new and known analytic solutions of physical interest in scenarios with extra dimensions and with presence of higher curvature terms. Furthermore, using our method, it is shown that applying the minimal geometric deformation to the Anti de Sitter space time it is possible to obtain regular black hole solutions.PACS. PACS-key discribing text of that key -PACS-key discribing text of that key
In this work two new families of non-singular or regular black hole solutions are displayed. These black holes behave as de Sitter space near its center and have a well defined AdS asymptotic region for negative cosmological constant. These solutions are constructed on a general ground through the introduction of a finite density of mass/energy. This removes the usual singularity of a black hole and also introduces a new internal geometry. The thermodynamic properties of these solutions are discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.