[1] Snow and ice thermodynamics over the Arctic Ocean were simulated applying a one-dimensional model. A number of numerical experiments in synoptic (10 days in early autumn) and seasonal (May-September) scales were carried out to investigate the impact of external forcing, snow physics, and the model resolution: the number of layers in both snow and ice ranged from 3 to 40. The model forcing was based on in situ observations carried out in 2003 during the Chinese National Arctic Research Expedition (CHINARE) as well as on forecasts and analyses of the European Centre for MediumRange Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR). The model results were compared against the results of the ECMWF and NCEP/NCAR sea ice schemes. The ECMWF operational precipitation forecasts yielded realistic seasonal snowfall, while the precipitation in NCEP/NCAR reanalysis was unrealistically large. A good result on snow thickness evolution also strongly depended on the accuracy of modeled snowmelt. A time-dependent surface albedo parameterization was critical for the seasonal evolution of snow and ice thickness. Application of 15-20 model levels in snow and ice is recommended as it (1) ensured good reproduction of the vertical snow/ice temperature profile also when solar radiation was large, (2) decreased the sensitivity of snow and ice mass balance to changes in surface albedo, (3) enabled the calculation of subsurface melting of snow and ice, and (4) reasonably reproduced the superimposed ice formation and onset of ice melt. In autumn, however, the accuracy of atmospheric forcing was more important than the model resolution.
[1] The radiative and turbulent heat fluxes between the snow-covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m À2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m À2 ), net longwave radiation (À29 ± 4 W m À2 ), latent heat flux (À14 ± 5 W m À2 ), and sensible heat flux (À6 ± 5 W m À2 ). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below À50 W m À2 . At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.
This chapter describes observed changes in sea level and wind waves in the Baltic Sea basin over the past 200 years and the main climate drivers of this change. The datasets available for studying these are described in detail. Recent climate change and land uplift are causing changes in sea level. Relative sea level is falling by 8.2 mm year −1 in the Gulf of Bothnia and slightly rising in parts of the southern Baltic Sea. Absolute sea level (ASL) is rising by 1.3-1.8 mm year −1 , which is within the range of recent global estimates. The 30-year trends of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.