The results of this study suggest that there are some differences in the tested properties of the FRC materials.
Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200 degrees C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200 degrees C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.
The objective of this study was to determine the flexural properties and the release of chlorhexidine digluconate (CHX) of CHX laced unidirectional E-glass fibre reinforced provisional fixed partial denture polymer. Bar shaped test specimens (3.3 x 10.0 x 65.0 mm) were fabricated from provisional fixed partial denture polymer (mixture of poly[ethylmethacrylate] powder and n-poly[butyl methacrylate] monomer liquid) with E-glass fibre reinforcements. Poly(methyl methacrylate) preimpregnated continuous unidirectional glass fibre reinforcement was laced with CHX. The glass fibre reinforcements were incorporated into the polymer and the polymerised to the form of test specimens. In addition test specimens without CHX in glass fibre reinforcement were made for comparison. Control specimens did not contain glass fibres in the test specimens. Flexural strength and modulus of test specimens (n = 6) was tested with three-point bending test after storing the specimens dry or in water (two weeks). Released CHX was determined with high performance liquid chromatography during 180 days water immersion. In dry conditions, the flexural strength and the modulus of the polymer was 43 MPa and 1.7 GPa, and with glass fibre reinforcement 96 MPa and 3.5 GPa. With the reinforcement laced with CHX, the strength was 92 MPa and the modulus was 3.2 GPa. The water storage of test specimens did not weaken the reinforced polymer. The majority of the CHX released from the glass fibre reinforced polymer during the first days of storage in water. Flexural properties of provisional fixed partial denture polymer were increased using glass fibre reinforcement. The fibre reinforcement that was laced with CHX resulted in similar reinforcing effect.
Aims The aim of this study was to compare the attachment of different composite resin luting cements to a fiber-reinforced composite (FRC) post with a semi-interpenetrating polymer network polymer matrix. Methods and Materials Six different brands of composite resin luting cement stubs were applied on the surface of FRC post material and light-cured for 40 seconds. Shear bond strengths of luting cement stubs were measured using a universal testing machine. Results The differences in shear bond strengths between the cements were not statistically significant. Conclusion All of the tested composite resin luting cements provided acceptable attachment to the tested FRC post. The tested FRC post material is suitable to use with different composite resin luting cements. Citation Le Bell-Rönnlöf AM, Lahdenperä M, Lassila L, Vallittu P. Bond Strength of Composite Resin Luting Cements to Fiber-reinforced Composite Root Canal Post. J Contemp Dent Pract 2007 September; (8)6:017-024.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.