Prediction of type 1 diabetes is based on the detection of multiple islet autoantibodies in subjects who are at increased genetic risk. Prediction of the timing of diagnosis is challenging, however. We assessed the utility of HbA1c levels in predicting the clinical disease in genetically predisposed children with multiple autoantibodies. Cord blood samples from 168,055 newborn infants were screened for class II HLA genotypes in Finland, and 14,876 children with increased genetic risk for type 1 diabetes were invited to participate in regular follow-ups, including screening for diabetes-associated autoantibodies. When two or more autoantibodies were detected, HbA1c levels were analyzed at each visit. During follow-up, multiple (two or more) autoantibodies developed in 466 children; type 1 diabetes was diagnosed in 201 of these children (43%, progressors), while 265 children remained disease free (nonprogressors) by December 2011. A 10% increase in HbA1c levels in samples obtained 3–12 months apart predicted the diagnosis of clinical disease (hazard ratio [HR] 5.7 [95% CI 4.1–7.9]) after a median time of 1.1 years (interquartile range [IQR] 0.6–3.1 years) from the observed rise of HbA1c. If the HbA1c level was ≥5.9% (41 mmol/mol) in two consecutive samples, the median time to diagnosis was 0.9 years (IQR 0.3–1.5, HR 11.9 [95% CI 8.8–16.0]). In conclusion, HbA1c is a useful biochemical marker when predicting the time to diagnosis of type 1 diabetes in children with multiple autoantibodies.
Objective: To study the clinical manifestations and occurrence of mtDNA depletion and deletions in paediatric patients with neuromuscular diseases and to identify novel clinical phenotypes associated with mtDNA depletion or deletions.Methods: Muscle DNA samples from patients presenting with undefined encephalomyopathies or myopathies were analysed for mtDNA content by quantitative real-time PCR and for deletions by long-range PCR. Direct sequencing of mtDNA maintenance genes and whole-exome sequencing were used to study the genetic aetiologies of the diseases. Clinical and laboratory findings were collected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.