The coronavirus disease (COVID-19), caused by SARS-CoV-2 infection, accounts for more than 2.4 million deaths worldwide, making it the main public health problem in 2020. Purinergic signaling is involved in the pathophysiology of several viral infections which makes the purinergic system a potential target of investigation in COVID-19. During viral infections, the ATP release initiates a cascade that activates purinergic receptors. This receptor activation enhances the secretion of pro-inflammatory cytokines and performs the chemotaxis of macrophages and neutrophils, generating an association between the immune and the purinergic systems. This review was designed to cover the possible functions of purinergic signaling in COVID-19, focusing on the possible role of purinergic receptors such as P2X7 which contributes to cytokine storm and inflammasome NLRP3 activation and P2Y1 that activates the blood coagulation pathway. The possible role of ectonucleotidases, such as CD39 and CD73, which have the function of dephosphorylating ATP in an immunosuppressive component, adenosine, are also covered in detail. Moreover, therapeutic combination or association possibilities targeting purinergic system components are also suggested as a possible useful tool to be tested in future researches, aiming to unveil a novel option to treat COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.