Mapping species distributions is a crucial but challenging requirement of wildlife management. The frequent need to sample vast expanses of potential habitat increases the cost of planned surveys and rewards accumulation of opportunistic observations. In this paper, we integrate planned survey data from roost counts with opportunistic samples from eBird, WikiAves and Xeno-canto citizen-science platforms to map the geographic range of the endangered Vinaceous-breasted Parrot. We demonstrate the estimation and mapping of species occurrence based on data integration while accounting for specifics of each data set, including observation technique and uncertainty about the observations. Our analysis illustrates 1) the incorporation of sampling effort, spatial autocorrelation, and site covariates in a joint-likelihood, hierarchical, data-integration model; 2) the evaluation of the contribution of each data set, as well as the contribution of effort covariates, spatial autocorrelation, and site covariates to the predictive ability of fitted models using a cross-validation approach; and 3) how spatial representation of the latent occupancy state (i.e. realized occupancy) helps identify areas with high uncertainty that should be prioritized in future field work. Our results reveal a Vinaceous-breasted Parrot geographic range of 434,670 square kilometers, which is three times larger than the Extant area previously reported in the IUCN Red List. The exclusion of one data set at a time from the analyses always resulted in worse predictions by the models of truncated data than by the full model, which included all data sets. Likewise, exclusion of spatial autocorrelation, site covariates, or sampling effort resulted in worse predictions. The integration of different data sets into one joint-likelihood model produced a more reliable representation of the species range than any individual data set taken on its own improving the use of citizen science data in combination with planned survey results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.