A novel type of coronavirus, now known under the acronym COVID-19, was initially discovered in the city of Wuhan, China. Since then, it has spread across the globe and now it is affecting over 210 countries worldwide. The number of confirmed cases is rapidly increasing and has recently reached over 14 million on July 18, 2020, with over 600,000 confirmed deaths. In the research presented within this paper, a new forecasting model to predict the number of confirmed cases of COVID-19 disease is proposed. The model proposed in this paper is a hybrid between machine learning adaptive neuro-fuzzy inference system and enhanced genetic algorithm metaheuristics. The enhanced genetic algorithm is applied to determine the parameters of the adaptive neuro-fuzzy inference system and to enhance the overall quality and performances of the prediction model. Proposed hybrid method was tested by using realistic official dataset on the COVID-19 outbreak in the state of China. In this paper, proposed approach was compared against multiple existing state-of-the-art techniques that were tested in the same environment, on the same
Recent advances in online payment technologies combined with the impact of the COVID-19 global pandemic has led to a significant escalation in the number of online transactions and credit card payments being executed every day. Naturally, there has also been an escalation in credit card frauds, which is having a significant impact on the banking institutions, corporations that issue credit cards, and finally, the vendors and merchants. Consequently, there is an urgent need to implement and establish proper mechanisms that can secure the integrity of online card transactions. The research presented in this paper proposes a hybrid machine learning and swarm metaheuristic approach to address the challenge of credit card fraud detection. The novel, enhanced firefly algorithm, named group search firefly algorithm, was devised and then used to a tune support vector machine, an extreme learning machine, and extreme gradient-boosting machine learning models. Boosted models were tested on the real-world credit card fraud detection dataset, gathered from the transactions of the European credit card users. The original dataset is highly imbalanced; to further analyze the performance of tuned machine learning models, in the second experiment performed for the purpose of this research, the dataset has been expanded by utilizing the synthetic minority over-sampling approach. The performance of the proposed group search firefly metaheuristic was compared with other recent state-of-the-art approaches. Standard machine learning performance indicators have been used for the evaluation, such as the accuracy of the classifier, recall, precision, and area under the curve. The experimental findings clearly demonstrate that the models tuned by the proposed algorithm obtained superior results in comparison to other models hybridized with competitor metaheuristics.
Developing countries have had numerous obstacles in diagnosing the COVID-19 worldwide pandemic since its emergence. One of the most important ways to control the spread of this disease begins with early detection, which allows that isolation and treatment could perhaps be started. According to recent results, chest X-ray scans provide important information about the onset of the infection, and this information may be evaluated so that diagnosis and treatment can begin sooner. This is where artificial intelligence collides with skilled clinicians’ diagnostic abilities. The suggested study’s goal is to make a contribution to battling the worldwide epidemic by using a simple convolutional neural network (CNN) model to construct an automated image analysis framework for recognizing COVID-19 afflicted chest X-ray data. To improve classification accuracy, fully connected layers of simple CNN were replaced by the efficient extreme gradient boosting (XGBoost) classifier, which is used to categorize extracted features by the convolutional layers. Additionally, a hybrid version of the arithmetic optimization algorithm (AOA), which is also developed to facilitate proposed research, is used to tune XGBoost hyperparameters for COVID-19 chest X-ray images. Reported experimental data showed that this approach outperforms other state-of-the-art methods, including other cutting-edge metaheuristics algorithms, that were tested in the same framework. For validation purposes, a balanced X-ray images dataset with 12,000 observations, belonging to normal, COVID-19 and viral pneumonia classes, was used. The proposed method, where XGBoost was tuned by introduced hybrid AOA, showed superior performance, achieving a classification accuracy of approximately 99.39% and weighted average precision, recall and F1-score of 0.993889, 0.993887 and 0.993887, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.