Two lichen species collected in maritime Antarctica (King George Island) were exposed under laboratory conditions to excess irradiance to evaluate the response of photosystem 2 (PS2). The response was measured on fully hydrated lichen thalli at 5 o C by means of a modulated fluorometer using chlorophyll (Chl) fluorescence induction curve supplemented with analysis of quenching mechanisms. Chl fluorescence parameters [i.e. ratio of variable to maximum Chl fluorescence (F V /F M ), quantum yield of PS2 photochemical reactions (Φ 2 ), quenching coefficients] were evaluated before and several times after exposition to high irradiance in order to characterise the extent of photoinhibition, fast and slow phase of recovery. Strong irradiance (2 000 µmol m -2 s -1 ) caused high degree of photoinhibition, particularly higher in fruticose (Usnea antarctica) than in foliose (Umbilicaria decussata) lichen species. Fast phase of recovery from photoinhibition, corresponding to regulatory mechanisms of PS2, was more apparent in U. decussata and Φ 2 than in U. antarctica and F V /F M and Φ 2 within 40 min after photoinhibitory treatment. It was followed by a slow phase lasting several hours, corresponding to repair and re-synthesis processes. After photoinhibitory treatment, recovery of non-photochemical quenching (NPQ) was faster and more pronounced in U. decussata than in U. antarctica. Significant differences were found between the two species in the rate of recovery in fast-(q E ) and slow-recovering (q T+I ) component of NPQ.
An unusual dip (compared to higher plant behaviour under comparable light conditions) in chlorophyll fluorescence induction (FI) at about 0.2-2 s was observed for thalli of several lichen species having Trebouxia species (the most common symbiotic green algae) as their native photobionts and for Trebouxia species cultured separately in nutrient solution. This dip appears after the usual O(J)IP transient at a wide range of excitation light intensities (100-1800 micromol photons m(-2) s(-1)). Simultaneous measurements of FI and 820-nm transmission kinetics (I(820)) with lichen thalli showed that the decreasing part of the fluorescence dip (0.2-0.4 s) is accompanied by a decrease of I(820), i.e., by a reoxidation of electron carriers at photosystem I (PSI), while the subsequent increasing part (0.4-2 s) of the dip is not paralleled by the change in I(820). These results were compared with that measured with pea leaves-representatives of higher plants. In pea, PSI started to reoxidize after 2-s excitation. The simultaneous measurements performed with thalli treated with methylviologen (MV), an efficient electron acceptor from PSI, revealed that the narrow P peak in FI of Trebouxia-possessing lichens (i.e., the I-P-dip phase) gradually disappeared with prolonged MV treatment. Thus, the P peak behaves in a similar way as in higher plants where it reflects a traffic jam of electrons induced by a transient block at the acceptor side of PSI. The increasing part of the dip in FI remained unaffected by the addition of MV. We have found that the fluorescence dip is insensitive to antimycin A, rotenone (inhibitors of cyclic electron flow around PSI), and propyl gallate (an inhibitor of plastid terminal oxidase). The 2-h treatment with 5 microM nigericin, an ionophore effectively dissipating the pH-gradient across the thylakoid membrane, did not lead to significant changes either in FI nor I(820) kinetics. On the basis of the presented results, we suggest that the decreasing part of the fluorescence dip in FI of Trebouxia-lichens reflects the activation of ferredoxin-NADP(+)-oxidoreductase or Mehler-peroxidase reaction leading to the fast reoxidation of electron carriers in thylakoid membranes. The increasing part of the dip probably reflects a transient reduction of plastoquinone (PQ) pool that is not associated with cyclic electron flow around PSI. Possible causes of this MV-insensitive PQ reduction are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.