The high proliferation of converter-dominated Distributed Renewable Energy Sources (DRESs) at the distribution grid level has gradually replaced the conventional synchronous generators (SGs) of the transmission system, resulting in emerging stability and security challenges. The inherent characteristics of the SGs are currently used for providing ancillary services (ASs), following the instructions of the Transmission System Operator, while the DRESs are obliged to offer specific system support functions, without being remunerated for these functions, but only for the energy they inject. This changing environment has prompted the integration of energy storage systems as a solution for transfusing new characteristics and elaborating their business in the electricity markets, while the smart grid infrastructure and the upcoming microgrid architectures contribute to the transformation of the distribution grid. This review investigates the existing ASs in transmission system with the respective markets (emphasizing the DRESs’ participation in these markets) and proposes new ASs at distribution grid level, with emphasis to inertial response, active power ramp rate control, frequency response, voltage regulation, fault contribution and harmonic mitigation. The market tools and mechanisms for the procurement of these ASs are presented evolving the existing role of the Operators. Finally, potential barriers in the technical, regulatory, and financial framework have been identified and analyzed.
The electric power sector is one of the later sectors in adopting digital twins and models in the loop for its operations. This article firstly reviews the history, the fundamental properties, and the variants of such digital twins and how they relate to the power system. Secondly, first applications of the digital twin concept in the power and energy business are explained. It is shown that the trans-disciplinarity, the different time scales, and the heterogeneity of the required models are the main challenges in this process and that co-simulation and co-modeling can help. This article will help power system professionals to enter the field of digital twins and to learn how they can be used in their business.
A High Impedance Fault (HIF) in the power distribution systems remains mostly undetected by conventional protection schemes due to low fault currents. Apart from degrading the reliability of power supply to customers, HIF can impose a high cost on the utilities due to technical damages. The nonlinear and asymmetric nature of HIF makes its detection and identification very challenging. HIF signatures are in the form of minute-level distortions in the observable AC sinusoidal voltage and current waveforms but these signatures do not follow a clear pattern. In this paper we present Advanced Distortion Detection Technique (ADDT), based on waveform analytics to distinguish and detect HIF. In addition, the ADDT analysis provides a fair assessment about the location and severity of HIF for efficient decision-making at the DSO level. ADDT is computationally lightweight and can be implemented in actual relays, hence providing an easy and cost-effective solution to HIF detection issues. ADDT robustness is tested in several simulation cases of interest using the IEEE-34 and IEEE-13 distribution test feeder systems in RTDS power system simulator. The test results successfully demonstrate the effectiveness and robustness of ADDT.
We present comparisons of some of the available algorithms for acquisition footprint suppression. Fourier transform based Kx-Ky filtering is very efficient for noise removal, but can also remove geologic features. New wavelet transforms based techniques show promising results that can overcome these disadvantages. They allow for decomposition of the seismic signal on different scales and filtering of only those that have noise. The combination of 1D decomposition (wavelet transform) and 2D filtering (FFT or wavelet transform) gives the best results but it is computationally intensive. We use attribute analysis to evaluate properties of filtering techniques and notice improvement in both lineament resolution and noise removal.
The upward trends in renewable energy penetration, cross-border flow volatility and electricity actors’ proliferation pose new challenges in the power system management. Electricity and market operators need to increase collaboration, also in terms of more frequent and detailed system analyses, so as to ensure adequate levels of quality and security of supply. This work proposes a novel distributed load flow solver enabling for better cross border flow analysis and fulfilling possible data ownership and confidentiality arrangements in place among the actors. The model exploits an Inexact Newton Method, the Newton–Krylov–Schwarz method, available in the portable, extensible toolkit for scientific computation (PETSc) libraries. A case-study illustrates a real application of the model for the TSO–TSO (transmission system operator) cross-border operation, analyzing the specific policy context and proposing a test case for a coordinated power flow simulation. The results show the feasibility of performing the distributed calculation remotely, keeping the overall simulation times only a few times slower than locally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.