The recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs) showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34+ cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV) and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF) patients. Moreover, thrombocytosis was reduced by JAK2V617F allele burden in essential thrombocythemia (ET) and PMF. 261 significantly changed genes have been detected in PV, 82 in ET, and 94 genes in PMF. The following JAK-STAT signaling pathway related genes had augmented expression in CD34+ cells of MPNs: CCND3 and IL23A regardless of JAK2V617F allele burden; CSF3R, IL6ST, and STAT1/2 in ET and PV with JAK2V617F mutation; and AKT2, IFNGR2, PIM1, PTPN11, and STAT3 only in PV. STAT5A gene expression was generally reduced in MPNs. IL-6 cytokine levels were increased in plasma, as well as IL-6 protein levels in bone marrow stroma of MPNs, dependent on JAK2V617F mutation presence in ET and PMF patients. Therefore, the JAK2V617F mutant allele burden participated in inflammation biomarkers induction and related signaling pathways activation in MPNs.
From our data we conclude that the S100A8 and S100A9 granulocyte and plasma levels are increased in MPN patients, along with inflammation markers, depending on their JAK2V617F mutation allele burden. We also found that S100A8/9-mediated inhibition of the proliferation-related AKT and ERK1/2 signaling pathways can be decreased by CALR mutation-dependent TLR4 blocking and increased by RAGE inhibition in MPN.
The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34+ cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34+ cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34+ cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34+ cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34+ cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34+ cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling.
Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry "hot spot" method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF> PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.
Hydroxyurea (HU) is a nonalkylating antineoplastic agent used in the treatment of hematological malignancies. HU is a DNA replication stress inducer, and as such, it may induce a premature senescence‐like cell phenotype; however, its repercussion on bystander cell proliferation has not been revealed so far. Our results indicate that HU strongly inhibited peripheral blood mesenchymal stromal cells (PBMSC) proliferation by cell cycle arrest in S phase, and that, consequently, PBMSC acquire senescence‐related phenotypical changes. HU‐treated PBMSC display increased senescence‐associated β‐galactosidase levels and p16INK4 expression, as well as DNA damage response and genotoxic effects, evidenced by expression of γH2A.X and micronuclei. Moreover, HU‐induced PBMSC senescence is mediated by increased reactive oxygen species (ROS) levels, as demonstrated by the inhibition of senescence markers in the presence of ROS scavenger N‐acetylcysteine and NADPH oxidase inhibitor Apocynin. To determine the HU‐induced bystander effect, we used the JAK2V617F‐positive human erythroleukemia 92.1.7 (HEL) cells. Co‐culture with HU‐induced senescent PBMSC (HU‐S‐PBMSC) strongly inhibited bystander HEL cell proliferation, and this effect is mediated by both ROS and transforming growth factor (TGF)‐β expression. Besides induction of premature senescence, HU educates PBMSC toward an inhibitory phenotype of HEL cell proliferation. Finally, our study contributes to the understanding of the role of HU‐induced PBMSC senescence as a potential adjuvant in hematological malignancy therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.