International audienceThere are several standard methods for evaluating the performance of models for objective quality assessment with respect to results of subjective tests. However, all of them suffer from one or more of the following drawbacks: They do not consider the uncertainty in the subjective scores, requiring the models to make certain decision where the correct behavior is not known. They are vulnerable to the quality range of the stimuli in the experiments. In order to compare the models, they require a mapping of predicted values to the subjective scores, thus not comparing the models exactly as they are used in the real scenarios. In this paper, new methodology for objective models performance evaluation is proposed. The method is based on determining the classification abilities of the models considering two scenarios inspired by the real applications. It does not suffer from the previously stated drawbacks and enables to easily evaluate the performance on the data from multiple subjective experiments. Moreover, techniques to determine statistical significance of the performance differences are suggested. The proposed framework is tested on several selected metrics and datasets, showing the ability to provide a complementary information about the models' behavior while being in parallel with other state-of-the-art methods
We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.
Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.
Organosilicon plasma polymers were deposited on polyvinyl alcohol and polyamide 6 electrospun nanofibers from hexamethyldisiloxane/Ar mixtures in low pressure (LP) radio frequency (RF) discharges with capacitive coupling and by cold RF plasma multi-jets working at atmospheric pressure (AP). The chemistry of the films deposited at LP was significantly varied by changing the RF power and process pressure as studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Both the gas phase and surface processes contributed to the observed differences in the film properties. Significant variations in the nano/microstructure of the plasma polymers prepared by plasma processes at two different pressures were revealed by Atomic force microscopy and Scanning electron microscopy analysis. Modifications of the fibrous materials were investigated with respect to the wettability and structural properties. The values of the water contact angle were strongly influenced by both, the chemical composition of the deposited layers and the overall surface structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.