Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition.
In addition to its role in reproduction, estradiol-17β is critical to the regulation of energy balance and body weight. Estrogen receptor α-null (Erα -/-) mutant mice develop an obese state characterized by decreased energy expenditure, decreased locomotion, increased adiposity, altered glucose homeostasis, and hyperleptinemia. Such features are reminiscent of the propensity of postmenopausal women to develop obesity and type 2 diabetes. The mechanisms by which ERα signaling maintains normal energy balance, however, have remained unclear. Here we used knockin mice that express mutant ERα that can only signal through the noncanonical pathway to assess the role of nonclassical ERα signaling in energy homeostasis. In these mice, we found that nonclassical ERα signaling restored metabolic parameters dysregulated in Erα -/-mutant mice to normal or near-normal values. The rescue of body weight and metabolic function by nonclassical ERα signaling was mediated by normalization of energy expenditure, including voluntary locomotor activity. These findings indicate that nonclassical ERα signaling mediates major effects of estradiol-17β on energy balance, raising the possibility that selective ERα agonists may be developed to reduce the risks of obesity and metabolic disturbances in postmenopausal women. IntroductionIn addition to its critical functions as a reproductive hormone, estradiol-17β (E 2 ) plays a vital role in the regulation of energy balance and body weight (1). Estrogen deficiency at menopause is associated with an increased probability of obesity as well as increased risk for the development of type 2 diabetes (2). In experimental animals, reduction of circulating estrogen levels by ovariectomy leads to the development of obesity, which can be reversed or prevented by E 2 treatment (1). The effects of E 2 on energy balance bear many similarities to the actions of leptin and insulin, key molecules involved in energy homeostasis (3, 4). Genetic and pharmacological studies have demonstrated that leptin and insulin act directly on neural networks to modulate energy homeostasis, where the net effect is to decrease food intake and increase energy expenditure (5-9). Both can activate STAT3 in various tissues, and hypothalamic leptin and insulin signaling are known to converge on the PI3K pathway (10-13). Similarly, E 2 is now also known to activate STAT3 as well as PI3K signaling cascades, suggestive of possible cross-talk among these molecules and possibly representing a common neuronal signaling mechanism that may help explain the similarities in their central effects on energy homeostasis (14-17).That these metabolic actions of E 2 are mediated by estrogen receptor α (ERα) has been demonstrated in Erα-null (Erα -/-) mutant mice, in which the ablation of ERα signaling results in a metabolic syndrome characterized by increased body weight, adiposity, altered glucose homeostasis, decreased energy expenditure, hyperinsulinemia, and hyperleptinemia (18)(19)(20). However, these metabolic character-
We recently reported that stressed adipocytes release extracellular vesicles (EVs) that act as “find me” signals to promote macrophage migration and activation. In this study we performed a comprehensive characterization of stressed adipocyte-derived EVs, assessing their antigenic composition, lipidomics, and RNA profiles. Perilipin A was identified as one of the adipose-specific proteins and studied as a potential novel biomarker to detect adipocyte-derived EVs in circulation. Circulating EVs were significantly increased in mice with diet-induced obesity (DIO) and in obese humans with Metabolic Syndrome compared to lean controls. This increase was associated with decreased glucose tolerance in the DIO mice and metabolic dysfunction, elevated insulin and homeostatic model assessment of insulin resistance (HOMA-IR), in the obese humans. EVs from both DIO mice and obese humans were enriched in perilipin A, a central gatekeeper of the adipocyte lipid storehouse and a marker of adipocyte differentiation. In obese humans, circulating levels of EVs enriched in perilipin A were dynamic, decreasing 35% (p<0.05) after a 3-month reduced calorie diet intervention. This translational study provides an extensive characterization of adipocyte-derived EVs. The findings identify perilipin A as a novel biomarker of circulating EVs of adipocyte origin and support the development of circulating perilipin A-positive EVs as indicators of adipose tissue health.
Androgen exposure during intrauterine life in nonhuman primates and in sheep results in a phenocopy of the reproductive and metabolic features of polycystic ovary syndrome (PCOS). Such exposure also results in reproductive features of PCOS in rodents. We investigated whether transient prenatal androgen treatment produced metabolic abnormalities in adult female rats and the mechanisms of these changes. Pregnant dams received free testosterone or vehicle injections during late gestation, and their female offspring were fed regular or high-fat diet (HFD). At 60 days of age, prenatally androgenized (PA) rats exhibited significantly increased body weight; parametrial and subcutaneous fat; serum insulin, cholesterol and triglyceride levels; and hepatic triglyceride content (all P < 0.0125). There were no significant differences in insulin sensitivity by intraperitoneal insulin tolerance test or insulin signaling in liver or skeletal muscle. HFD had similar effects to PA on body weight and composition as well as on circulating triglyceride levels. HFD further increased hepatic triglyceride content to a similar extent in both PA and control rats. In PA rats, HFD did not further increase circulating insulin, triglyceride, or cholesterol levels. In control rats, HFD increased insulin levels, but to a lesser extent than PA alone ( approximately 2.5- vs. approximately 12-fold, respectively). We conclude that transient prenatal androgen exposure produces features of the metabolic syndrome in adult female rats. Dyslipidemia and hepatic steatosis appear to be mediated by PA-induced increases in adiposity, whereas hyperinsulinemia appears to be a direct result of PA.
Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs) are critical “find-me” signals for recruitment of monocytes and macrophages. Supernatants from stressed adipocytes stimulated the attraction of monocyte cells and primary macrophages. The activation of caspase 3 was required for release of these signals. Adipocytes exposed to saturated fatty acids showed marked release of MPs into the supernatant while common genetic mouse models of obesity demonstrate high levels of circulating adipocyte-derived MPs. The release of MPs was highly regulated and dependent on caspase 3 and Rho-associated kinase. Further analysis identified these MPs as a central chemoattractant in vitro and in vivo. In addition, intravenously transplanting circulating MPs from the ob/ob mice lead to activation of monocytes in circulation and adipose tissue of the wild type mice. These data identify adipocyte-derived MPs as novel “find me” signals that contributes to macrophage infiltration associated with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.