This paper presents a novel formula for the complex permittivity of lossy dielectrics, which is valid in a broad frequency range and is ensuring a causal impulse response in the time domain. The application of this formula is demonstrated through the analysis of wet soil, where the coefficients of the formula are tuned to match the measured data from the literature. Additionally, an analytical expression for the impulse response of the relative permittivity is derived. The influence of the frequency dependence of the complex permittivity on the causality of responses is illustrated through the analysis of 1-D, 2-D, and 3-D electromagnetic systems. Being the most complex, the 3-D system is also used as a test bed for comparing the computational limitations of two commercially available solvers, CST and WIPL-D.
SWIR imaging bears considerable advantages over visible-light (color) and thermal images in certain challenging propagation conditions. Thus, the SWIR imaging channel is frequently used in multi-spectral imaging systems (MSIS) for long-range surveillance in combination with color and thermal imaging to improve the probability of correct operation in various day, night and climate conditions. Integration of deep-learning (DL)-based real-time object detection in MSIS enables an increase in efficient utilization for complex long-range surveillance solutions such as border or critical assets control. Unfortunately, a lack of datasets for DL-based object detection models training for the SWIR channel limits their performance. To overcome this, by using the MSIS setting we propose a new cross-spectral automatic data annotation methodology for SWIR channel training dataset creation, in which the visible-light channel provides a source for detecting object types and bounding boxes which are then transformed to the SWIR channel. A mathematical image transformation that overcomes differences between the SWIR and color channel and their image distortion effects for various magnifications are explained in detail. With the proposed cross-spectral methodology, the goal of the paper is to improve object detection in SWIR images captured in challenging outdoor scenes. Experimental tests for two object types (cars and persons) using a state-of-the-art YOLOX model demonstrate that retraining with the proposed automatic cross-spectrally created SWIR image dataset significantly improves average detection precision. We achieved excellent improvements in detection performance in various variants of the YOLOX model (nano, tiny and x).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.