Coronal mass ejections (CMEs) are believed to be the principal cause of increased geomagnetic activity. They are regarded as being in context of a series of related solar energetic events, such as X‐ray flares (XRAs) accompanied by solar radio bursts (RSPs) and also by solar energetic particle (SEP) flux. Two types of the RSP events are known to be geoeffective, namely, the RSP of type II, interpreted as the signature of shock initiation in the solar corona, and type IV, representing material moving upward in the corona. The SEP events causing geomagnetic response are known to be produced by CME‐driven shocks. In this paper, we use the method of the artificial neural network in order to quantify the geomagnetic response of particular solar events. The data concerning XRAs and RSPs II and/or IV together with their heliographic positions are taken as the input for the neural network. There is a key question posed in our study: can the successfulness of the neural network prediction scheme based solely on the solar disc observations (XRA and RSP) be improved by additional information concerning the SEP flux? To resolve this problem, we chose the SEP events possessing significant enhancement in the 10‐h window, commencing 12 h after the generation of XRAs. In particular, we consider the flux of high‐energy protons with energies over 10 MeV. We have used a chi‐square test to demonstrate that supplying such extra input data improves the neural network prediction scheme.
Abstract. The historical magnetic observatory Clementinum operated in Prague from 1839 to 1926. The data from the yearbooks that recorded the observations at Clementinum have recently been digitized and were subsequently converted, in this work, into the physical units of the International System of Units (SI). Introducing a database of geomagnetic data from this historical source is a part of our paper. Some controversial data are also analysed here. In the original historical sources, we identified an error in using the physical units. It was probably introduced by the observers determining the temperature coefficient of the bifilar apparatus. By recalculating the values in the records, some missing values are added; for instance, the temperature coefficients for the bifilar magnetometer, the baselines, and the annual averages for the horizontal intensity in the first years of observations were redetermined. The values of absolute measurements of the declination in 1852, which could not be found in the original sources, were also estimated. The main contribution of this article rests in critically reviewed information about the magnetic observations in Prague, which is, so far, more complete than any other. The work also contributes to the space weather topic by revealing a record of the now almost forgotten magnetic disturbance of 3 September 1839.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.