Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.
It has been well established that guided waves are sensitive to structural damages encountered on their path of propagation and for this reason this technique is very efficient for distinguishing defective structural components from defect-free ones. Although the guided wave technique can identify a specimen having a distribution of defects, detecting and quantifying a small defect on its path from a long distance, as required for structural health monitoring (SHM) applications, is not an easy task for the guided wave inspection technique even today, especially when the transducers cannot come in direct contact with the pipe wall. The current technological challenges for pipe inspection by generating guided waves using noncontact transducers are to detect a small defect on the pipe wall and estimate its location and size from a long distance when the reflected signal from the defect cannot be clearly identified as is the case for low frequency guided waves that can propagate long distances. Electro-magnetic acoustic transducers (EMATs) are used here to generate guided waves in the pipe by the noncontact technique. This paper shows how small a defect in a pipe wall can be detected and its location and dimension can be estimated using relatively low frequency guided waves generated and received by EMATs even when the defect signal is not clearly visible in the time history plot because various wave modes reflected from the defect and pipe ends overlap.
For several years guided waves have been used for pipe wall defect detection. Guided waves have become popular for monitoring large structures because of the capability of these waves to propagate long distances along pipes, plates, interfaces and structural boundaries before loosing their strengths. The current technological challenges are to detect small defects in the pipe wall and estimate their dimensions using appropriate guided wave modes and to generate those modes relatively easily for field applications. Electro-Magnetic Acoustic Transducers (EMAT) can generate guided waves in pipes in the field environment. This paper shows how small defects in the pipe wall can be detected and their dimensions can be estimated by appropriate signal processing technique applied to the signals generated and received by the EMAT.
<p>The new Governor Mario M. Cuomo Bridge spans the Hudson River between Rockland and Westchester Counties in southern New York. A key design criterion was to accommodate various modes of transportation in the future. This paper discusses how the bridges will accommodate dedicated bus rapid transit lanes as well as the potential future construction of a transit bridge between the structures without installing additional foundations in the river. The transit bridge would require significant rail construction on either side of the river to provide viable connections to existing rail lines, making it prohibitively expensive. The transit bridge will fit between the two highway bridges and carry two rail lines. We will explain how the highway bridges will accommodate the future rail bridge without providing needless excess capacity into the piers and foundations built under this design-build contract.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.